• 제목/요약/키워드: Optimization Algorithm

검색결과 5,672건 처리시간 0.034초

D2D 유틸리티 분석: 볼록최적화 알고리즘 (Analysis of D2D Utility: Convex Optimization Algorithm)

  • 오창윤
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.83-84
    • /
    • 2020
  • Sum Utility를 최적화하는 Convex Optimization Algorithm을 제안한다. 일반적으로, Sum Utility 최적화 문제는 Non Convex Optimization Problem이다. 하지만, '상대간섭'과 '간섭주요화'를 활용하여 Non Convex Optimization Problem이 간섭구간에 따라 Convex Optimization으로 해결할 수 있음을 확인하였다. 특히, 유틸리티 함수는 상대간섭 0.1 이하에서는 오목함수임을 확인하였다. 실험결과 상대간섭이 작아질수록 제안하는 알고리즘에 의한 Sum Utility는 증가함을 확인하였다.

  • PDF

시뮬레이티드 어닐링에 의한 인공위성 구조체 최적화 (Optimization of Satellite Structures by Simulated Annealing)

  • 임종빈;지상현;박정선
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.262-269
    • /
    • 2005
  • Optimization of a satellite structure under severe space launching environments is performed considering various design constraints. Simulate annealing, one of combinatorial optimization techniques, is used to optimize the satellite. The optimization results by the simulated annealing are compared to those by the method of modified feasible direction and genetic algorithm. Ten bar truss structure is optimized for feasibility study of the simulated annealing. Finally, the satellite structure is optimized by the simulated annealing algorithm under space environment. Weights of the satellite upper platform and propulsion module are minimized with consideration of several static and dynamic constraints. MSC/NASTRAN is used to find the static and dynamic responses. Simulated annealing has been programmed and integrated with the finite element analysis program for optimization. It is shown that the simulated annealing algorithm can be extended to the optimization of space structures.

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.

Design Centering by Genetic Algorithm and Coarse Simulation

  • Jinkoo Lee
    • 한국CDE학회논문집
    • /
    • 제2권4호
    • /
    • pp.215-221
    • /
    • 1997
  • A new approach in solving design centering problem is presented. Like most stochastic optimization problems, optimal design centering problems have intrinsic difficulties in multivariate intergration of probability density functions. In order to avoid to avoid those difficulties, genetic algorithm and very coarse Monte Carlo simulation are used in this research. The new algorithm performs robustly while producing improved yields. This result implies that the combination of robust optimization methods and approximated simulation schemes would give promising ways for many stochastic optimizations which are inappropriate for mathematical programming.

  • PDF

유전자 알고리즘을 이용한 서어보 밸브의 설계 파라미터 최적화 (Optimization of Design Parameters of a Servo Valve Using the Genetic Algorithm)

  • 엄태준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.464-468
    • /
    • 2000
  • This paper presents the optimization technique to select the design parameters of a hydraulic servo valve using the genetic algorithm. The dynamic performance is governed by the design parameters of the servo valve and they may be select by repeated number of simulations such that the desired performance is obtained. Using the genetic algorithm to optimize the design parameters, effective method is suggested. This method can be used for the design of the hydraulic systems as well as the servo valve.

  • PDF

A GLOBALLY AND SUPERLIEARLY CONVERGENT FEASIBLE SQP ALGORITHM FOR DEGENERATE CONSTRAINED OPTIMIZATION

  • Chen, Yu;Xie, Xiao-Liang
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.823-835
    • /
    • 2010
  • In this paper, A FSQP algorithm for degenerate inequality constraints optimization problems is proposed. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving a quadratic programming subproblem. To overcome the Maratos effect, a higher-order correction direction is obtained by solving another quadratic programming subproblem. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions. Finally, some preliminary numerical results are reported.

수직이착륙기 종축 제어기 설계에 적용된 입자군집 최적화 알고리즘과 KASS 시스템에 대한 고찰 (PSO-SAPARB Algorithm applied to a VTOL Aircraft Longitudinal Dynamics Controller Design and a Study on the KASS)

  • 이병석;최종연;허문범;남기욱;이준화
    • 한국항공운항학회지
    • /
    • 제24권4호
    • /
    • pp.12-19
    • /
    • 2016
  • In the case of hard problems to find solutions or complx combination problems, there are various optimization algorithms that are used to solve the problem. Among these optimization algorithms, the representative of the optimization algorithm created by imitating the behavior patterns of the organism is the PSO (Particle Swarm Optimization) algorithm. Since the PSO algorithm is easily implemented, and has superior performance, the PSO algorithm has been used in many fields, and has been applied. In particular, PSO-SAPARB (PSO with Swarm Arrangement, Parameter Adjustment and Reflective Boundary) algorithm is an advanced PSO algorithm created to complement the shortcomings of PSO algorithm. In this paper, this PSO-SAPARB algorithm was applied to the longitudinal controller design of a VTOL (Vertical Take-Off and Landing) aircraft that has the advantages of fixed-wing aircraft and rotorcraft among drones which has attracted attention in the field of UAVs. Also, through the introduction and performance of the Korean SBAS (Satellite Based Augmentation System) named KASS (Korea Augmentation Satellite System) which is being developed currently, this paper deals with the availability of algorithm such as the PSO-SAPARB.

실수 코딩 유전자 알고리즘을 이용한 생산 시스템의 시뮬레이션 최적화 (Simulation Optimization of Manufacturing System using Real-coded Genetic Algorithm)

  • 박경종
    • 산업경영시스템학회지
    • /
    • 제28권3호
    • /
    • pp.149-155
    • /
    • 2005
  • In this paper, we optimize simulation model of a manufacturing system using the real-coded genetic algorithm. Because the manufacturing system expressed by simulation model has stochastic process, the objective functions such as the throughput of a manufacturing system or the resource utilization are not optimized by simulation itself. So, in order to solve it, we apply optimization methods such as a genetic algorithm to simulation method. Especially, the genetic algorithm is known to more effective method than other methods to find global optimum, because the genetic algorithm uses entity pools to find the optimum. In this study, therefore, we apply the real-coded genetic algorithm to simulation optimization of a manufacturing system, which is known to more effective method than the binary-coded genetic algorithm when we optimize the constraint problems. We use the reproduction operator of the applied real-coded genetic algorithm as technique of the remainder stochastic sample with replacement and the crossover operator as the technique of simple crossover. Also, we use the mutation operator as the technique of the dynamic mutation that configures the searching area with generations.

Operating condition optimization of liquid metal heat pipe using deep learning based genetic algorithm: Heat transfer performance

  • Ik Jae Jin;Dong Hun Lee;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2610-2624
    • /
    • 2024
  • Liquid metal heat pipes play a critical role in various high-temperature applications, with their optimization being pivotal to achieving optimal thermal performance. In this study, a deep learning based genetic algorithm is suggested to optimize the operating conditions of liquid metal heat pipes. The optimization performance was investigated in both single and multi-variable optimization schemes, considering the operating conditions of heat load, inclination angle, and filling ratio. The single-variable optimization indicated reasonable performance for various conditions, reinforcing the potential applicability of the optimization method across a broad spectrum of high-temperature industries. The multi-variable optimization revealed an almost congruent performance level to single-variable optimization, suggesting that the robustness of optimization method is not compromised with additional variables. Furthermore, the generalization performance of the optimization method was investigated by conducting an experimental investigation, proving a similar performance. This study underlines the potential of optimizing the operating condition of heat pipes, with significant consequences in sectors such as high temperature field, thereby offering a pathway to more efficient, cost-effective thermal solutions.

Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화 (Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm)

  • 이강석;김정희;최창식;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF