• Title/Summary/Keyword: Optimal yield

Search Result 1,477, Processing Time 0.033 seconds

Optimizing slow pyrolysis of banana peels wastes using response surface methodology

  • Omulo, Godfrey;Banadda, Noble;Kabenge, Isa;Seay, Jeffrey
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.354-361
    • /
    • 2019
  • Renewable energy from biomass and biodegradable wastes can significantly supplement the global energy demand if properly harnessed. Pyrolysis is the most profound modern technique that has proved effective and efficient in the energy conversion of biomass to yield various products like bio-oil, biochar, and syngas. This study focuses on optimization of slow pyrolysis of banana peels waste to yield banana peels vinegar, tar and biochar as bio-infrastructure products. Response surface methodology using central composite design was used to determine the optimum conditions for the banana wastes using a batch reactor pyrolysis system. Three factors namely heating temperature ($350-550^{\circ}C$), sample mass (200-800 g) and residence time (45-90 min) were varied with a total of 20 individual experiments. The optimal conditions for wood vinegar yield (48.01%) were $362.6^{\circ}C$, 989.9 g and 104.2 min for peels and biochar yield (30.10%) were $585.9^{\circ}C$, 989.9 g and 104.2 min. The slow pyrolysis showed significant energy conversion efficiencies of about 90% at p-value ${\leq}0.05$. These research findings are of primary importance to Uganda considering the abundant banana wastes amounting to 17.5 million tonnes generated annually, thus using them as pyrolysis feedstock can boost the country's energy status.

Effect of Elevated CO2 and Temperature on Growth, Yield and Physiological Responses of Major Rice Cultivars by Region in South Korea

  • Hae-Ran Kim;Young-Han You;Heon-Mo Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.341-351
    • /
    • 2022
  • The physiological characteristics, growth, and yield of each regional rice variety ('Odaebyeo', 'Saechucheong', 'Ilmibyeo') were investigated depending on the impact of changes in temperature and CO2 concentration. Experiments were conducted with a control group, which reflected atmospheric CO2 concentration and temperature, and treatment groups, in which the CO2 concentration and temperature were increased by 250 ppm and 2.0℃ from those in the control group. The results showed that the increase in CO2 concentration and temperature reduced the growth and yield of the rice 'Odaebyeo', but did not substantially change the productivity of the 'Saechucheong' and 'Ilmibyeo'. The increase in CO2 concentration and temperature increased stomatal conductance and rate of transpiration of the 'Odaebyeo' variety, thereby decreasing its water use efficiency (WUE). In contrast, the increase in CO2 concentration and temperature increased the photosynthetic rate and WUE of the 'Saechucheong' and 'Ilmibyeo' varieties. The gradual change in climate is considered to directly affect growth and development of rice and diversely affect the productivity of each variety. Therefore, it is necessary to implement technological development, select regionally optimal rice varieties, develop new rice varieties, as well as conduct long-term monitoring of each rice variety for climate adaptation to counter global warming.

Effects of hydrothermal pretreatment on methane potential of anaerobic digestion sludge cake of cattle manure containing sawdust as bedding materials

  • Jun-Hyeong Lee;Chang-Hyun Kim;Young-Man Yoon
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.818-828
    • /
    • 2023
  • Objective: The purpose of this study was to analyze the effect of the hydrothermal pretreatment of anaerobic digestion sludge cake (ADSC) of cattle manure on the solubilization of organic matter and the methane yield to improve the anaerobic digestion efficiency of cattle manure collected from the sawdust pens of cattle. Methods: Anaerobic digestion sludge cake of cattle manure was thermally pretreated at 160℃, 180℃, 200℃, and 220℃ by a hydrothermal pressure reactor, and the biochemical methane potential of ADSC hydrolysate was analyzed. Methane yield recovered by the hydrothermal pretreatment of ADCS was estimated based on mass balance. Results: The chemical oxygen demand solubilization degree (CODs) of the hydrothermal hydrolysate increased to 63.56%, 67.13%, 70.07%, and 66.14% at the hydrothermal reaction temperatures of 160℃, 180℃, 200℃, and 220℃, respectively. Considering the volatile solids content obtained after the hydrothermal pretreatment, the methane of 10.2 Nm3/ton-ADSC was recovered from ADSC of 1.0 ton, and methane yields of ADSC hydrolysate increased to 15.6, 18.0, 17.4, and 17.2 Nm3/ton-ADSC. Conclusion: Therefore, the optimal hydrothermal reaction temperature that yielded the maximum methane yield was 180℃ based on mass balance, and the methane yield from cattle manure containing sawdust was improved by the hydrothermal pretreatment of ADSC.

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

Effects of Spring Seeding Dates on Dry Matter Yield and Feed Value of Alfalfa in the Central Area of South Korea (중부지방에서 봄 파종시기가 알팔파의 건물 생산량과 사료가치에 미치는 영향)

  • Seung Min Jeong;Mirae Oh;Bae Hun Lee;Ki-Won Lee;Hyung Soo Park
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.6-13
    • /
    • 2024
  • This study was conducted to determine the optimal spring seeding dates for alfalfa yield and feed value. The experiment was conducted annually for three years (2021~2023) at the field in the Department of Animal Resources Development, NIAS, located in Cheonan. The treatments involved six seeding dates ranging from February 24 to April 14, with 10days intervals. Alfalfa was harvested four times a year at the early flowering stage. Dry matter yield showed a tendency to decrease with delayed the seeding date. However, depending on the climatidc condisions in the seeding year, the dry matter yield on March 14 or 24 was comparable to that on February 24. Annual dry matter yield varied, influenced by the daylight conditions each year. The average feed value did not significantly differ within in the same year with delayed seeding dates (p>0.05). Therefore, the most stable period for alfalfa spring seeding in the central area of South Korea is considered to be from February 24 to April 4, with February 24 indentified as the optimal date.

A study of on site Pilot plant test of drying sewage sludge using Chain crusher flash dryer (타격기류 건조장치에 의한 하수슬러지의 건조 실증실험에 관한 연구)

  • Ahn, June-Shu;Kim, Byung-Tae;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5628-5636
    • /
    • 2012
  • Effective drying method of sewage sludge is researched in this study. To dry the sludge, chain crusher flash dryer was adopted to remove moisture content in the cell which is mostly responsible for the sludge moisture content. And Pilot plant experiment was conducted in real life sewage treatment plant to study effect and characteristics of operating conditions. Operating variables include sludge feeding rate, rotational speed of chain, process temperature and feed moisture content. As rotational speed of chain increased, product yield of sludge increased, and the performance of the testing system increased. And, as process temperature increased, the sludge drying efficiency increased. It is found that optimum feed moisture content is at 60% which shows the maximum sludge product yield and about 10 moisture content(%) of sludge product. Sludge feed rate showed optimal value, and when the sludge feed rate is exceeded, sludge product yield did not increased but the amount of residue increased. Pilot plant experiment results are as follow. The optimal condition for the rotational speed of chain 1600rpm(max. speed), final sludge discharge temperature $80^{\circ}C$, feed moisture content 60%, and feed rate 60kg/h. When the plant was operated at the optimal conditions, the final product showed fairly good results such as sludge product yield 85.5%, moisture content 11.0% and sludge drying efficiency 81.7%.

Assessment on Yield Decrease of Kimchi Cabbage by Extreme Weather Conditions using Physiological Parameters (생리적 요인 활용 이상기상에 의한 배추의 수량저하 평가)

  • Lee, Hee Ju;Lee, Sang Gyu;Kim, Sung Kyeom;Park, Sung Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.127-134
    • /
    • 2018
  • This study evaluated the effects of high air temperature and waterlogging duration on growth and yield of Kimchi cabbage. Air temperature treatments were applied with ventilation; optimal (set $20^{\circ}C$) and delayed ($30^{\circ}C$) in the greenhouses. The waterlogging treatment levels were implicated 0, 12, 24, 48, and 72 hours, respectively. The growth of Kimchi cabbage was significantly affected by waterlogging duration. The head weight decreased by combining severe waterlogging and high air temperature. Net photosynthetic rate under the combination of non-waterlogging and optimal air temperature was $22.6{\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$, which was the greatest, while that of 72 hours-waterlogging was rapidly decreased. The percentage of formality with 0, 12, and 24 hours-waterlogging was over 88%, however, those of 72 hours-waterlogging with optimal and delayed ventilation were 64 and 68%, respectively, which were dramatically reduced. The yields were more affected by waterlogging duration than air temperature treatment because of deducting as increased waterlogging periods. These results indicate that waterlogging treatment reduced the yield and quality of Kimchi cabbage, thus it will be feasible to enhance the harvest time when severe waterlogging in the field.

Effects of different soil moisture conditions on growth, yield and stress index of adzuki bean from paddy field cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sang Hun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.337-337
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Excessive soil moisture may cause nutrient deficiencies and oxygen deficiency. Excessive soil water during crop growth stages results in decrease of yields. In Korea, the largest agricultural lands are paddy fields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to success this policy, it is necessary to fully understand crop response to excessive soil moisture condition from paddy field soils. Adzuki bean is one of major legumes which provide protein in daily diet. Adzuki bean has been well know its weakness to excessive soil moisture condition, In order to obtain optimal yields of adzuki bean from paddy field cultivation, it is necessary to understand response of adzuki bean under different soil moisture conditions. This study investigated characteristics of growths, yields and response degree of water stress from adzuki bean. Three cultivars were selected for this study; Chungju, Hongeon, and Arari. All adzuki beans were cultivated in a paddy field which was divided into three sections with different soil moistures. The paddy field was located in Milyang, Gyeongsangnam during 2016. One section of the paddy field had the greatest average soil moisture content as 35.1% during adzuki bean cultivation (very poor). The second greatest soil moisture section had 32.6% (somewhat poor) and the smallest soil moisture section had 28.9% of soil moisture (somewhat well). During cultivation of three cultivar adzuki beans, soil moisture contents and groundwater levels were monitored. All the characteristics of growth and yield components were measured; height, thickness, 100 seed weights etc. Stress index values were calculated by Stress Day Index (SDI). All cultivars had the greatest yields from somewhat well section. Chungju had the greatest yields throughout all three sections compared to other cultivars. Chungju had 81% greater yield than Hongeon which had the smallest yield from somewhat well section. Arari set in middle from all sections. However there was no significant differences yields from very poor and somewhat poor sections. Leaf SPAD values tended to decrease and stable carbon isotope values increased as soil moisture increased. However, Chungju had no difference across different soil moistures in SPAD and stable carbon isotope values, while Hongeon had the greatest differences across sections. These trends followed by SDI values. Chungju had the smallest SDI values compared to other cultivars, which meant that Chungju was the strongest tolerance against excessive soil moisture than other cultivars. All three cultivars showed severe decrease of yields from very poor and somewhat poor sections. Arari and Hongeon showed great decrease from somewhat well section compared to yields from upland soil. These two cultivars may not be proper cultivating in paddy fields. In conclusion, adzuki bean is very sensitive to soil moisture condition and detailed soil managements are required to obtain optimal yields of adzuki bean from paddy field cultivation.

  • PDF

A Study on the Utilization of By-products from Honeyed Red Ginseng: Optimization of Total Ginsenoside Extraction Using Response Surface Methodology (홍삼정과 제조 부산물 이용에 관한 연구: 반응표면분석을 이용한 총 진세노사이드 추출조건의 최적화)

  • Lee, Eui-Seok;You, Kwan-Mo;Kim, Sun-Young;Lee, Ka-Soon;Park, Soo-Jin;Jeon, Byeong-Seon;Park, Jong-Tae;Hong, Soon-Taek
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • This study was carried out to extract ginsenosides in by-products from honeyed red ginseng. Response surface methodology (RSM) was used to optimize the extraction conditions. Based on D-optimal design, independent variables were ethanol (extraction solvent) concentration (30-90%, v/v), extraction temperature ($25-70^{\circ}C$), and extraction time (5-11 h). Extraction yield (Y1) and total ginsenosides (Y2) in the extract were analyzed as dependent variables. Results found that extraction yield increased with increasing extraction temperature and time, whereas it was decreased with increasing ethanol concentration. Similar trends were found for the content of ginsenosides in the extracts, except for ethanol concentration, which was increased with increasing ethanol concentration. Regression equations derived from RSM were suggested to coincide well with the results from the experiments. The optimal extraction conditions for extraction yield and total ginsenosides were an extraction temperature of $56.94^{\circ}C$, ethanol concentration of 57.90%, and extraction time of 11 h. Under these conditions, extraction yield and total ginsenoside contents were predicted to be 84.52% and 9.54 mg/g, respectively.

Growth and Yield of Forage Rice Cultivar 'Yeongwoo' according to Nitrogen Application Amount in Reclaimed Paddy Field

  • Eun-Ji Song;Sun-Woong Yun;Ji-Hyeon Mun;In-Ha Lee;Su-Hwan Lee;Nam-Jin Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.326-334
    • /
    • 2022
  • This study was carried out to investigate the optimal nitrogen concentration level suitable for forage rice growth by hydroponic cultivation in the salinity concentration of 0.1~0.3% which is similar to that of Muan reclaimed paddy field, and based on this results, to estimate optimal nitrogen fertilization level by field experiment in Muan reclaimed paddy for maximum forage production by cultivation of Yeongwoo rice. As a result of the growth response to the salt and nitrogen concentrations in the hydroponic cultivation experiment, the growth amount increased as the nitrogen concentration increased in the range of 0~24 me/L in the absence of salt stress. However, at a salt concentration of 0.1~0.3%, the growth amount was the highest at a nitrogen concentration of 12 me/L, and at higher nitrogen concentrations of that, the rice growth decreased as the nitrogen concentration increased. Therefore, nitrogen concentration of 12 me/L was judged to be an appropriate concentration for forage rice growth at salt concentration of 0.1~0.3%, and a nitrogen fertilization amount level corresponding to a nitrogen concentration of 12 me/L was actually applied to the Muan reclaimed paddy field for forage rice cultivation during two years. The amount of nitrogen fertilizer was tested with three treatments, which are 18 kg/10a considered appropriate, and 1.5 times and 2 times of the appropriate amount, and the planting density was tested with 2 treatments of 15 hills/m2 and 26 hills/m2. As a result of the reclaimed paddy field experiment, the yield was the highest when nitrogen fertilizer was applied at 18 kg/10a in the planting density of both treatments. Looking at the yield according to planting density, the high planting density plot yielded higher than the low planting density plot. In other words, when the planting density was 26 hills/m2 and the nitrogen fertilization amount was 18 kg/10, the highest dry matter yield of 1,763 kg/10a was obtained. From the results of hydroponics and reclaimed field experiments, we could conclude that the productivity of forage rice decreased more as the nitrogen concentration increased when the nitrogen concentration was higher than the optimal level under salt stress.