• 제목/요약/키워드: Optimal welding

검색결과 361건 처리시간 0.153초

듀얼 반응표면법을 이용한 V-그루브 GMA 용접공정 최적화에 관한 연구 (A Study on the Optimization for a V-groove GMA Welding Process Using a Dual Response Method)

  • 박형진;안승호;강문진;이세헌
    • Journal of Welding and Joining
    • /
    • 제26권2호
    • /
    • pp.85-91
    • /
    • 2008
  • In general, the quality of a welding process tends to vary with depending on the work environment or external disturbances. Hence, in order to achieve the desirable quality of welding, we should have the optimal welding condition that is not significantly affected by these changes in the environment or external disturbances. In this study, we used a dual response surface method in consideration of both the mean output variables and the standard deviation in order to optimize the V-groove arc welding process. The input variables for GMA welding process with the dual response surface are welding voltage, welding current and welding speed. The output variables are the welding quality function using the shape factor of bead geometry. First, we performed welding experiment on the interested area according to the central composite design. From the results obtained, we derived the regression model on the mean and standard deviation between the input and output variables of the welding process and then obtained the dual response surface. Finally, using the grid search method, we obtained the input variables that minimize the object function which led to the optimal V-groove arc welding process.

GMA 위보기 및 수직자세 초층용접 최적조건 선정에 관한 실험적 연구 (A Experiment Study on Selection the Optimal Condition for GMA Root-pass Welding in Overhead and Vertical Position)

  • 김지선;김인주;김일수
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.42-48
    • /
    • 2012
  • Due to increase in demand of stable and long pipelines in natural gas industry, wide range of researches are being performed on automation welding to improved welding quality with respect to weld process parameters in real time measurement. In particular, the coupling between the pipe manufacturing process and location of the weld seam, the measured size of the gap that exists in the weld position and the weld angle depending on whether the movement of molten weld. This is due to absence of controlling welding penetration position, depending on the required size of the angle of the setting. In addition, the optimum welding conditions must be considered while selecting, the correlation between these variables and the systematic correlation has not yet been identified. Therefore, in most welded pipe root-pass weld solely depends on the experience of workers in relation to secure a stable weld quality. In this study, automation welding system is implemented to select a suitable root-pass STT (Surface Tension Transfer) welding method using the optimal welding conditions. To successfully accomplish this objective, there were various welding conditions used for welding experiment to confirm that the assessment required for construction through the pipe and automatic welding process is proposed to optimize this plan.

해상풍력 발전용 타워 제작시 고장력강재의 초층용접에 관한 용접특성 연구 (Study of Welding Toughness Characteristics on the Root-pass Welding Process of High Tensile Steel at Tower Production for Offshore Wind Power Generation)

  • 정성명;김일수;김지선;나현호;이지혜
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.349-353
    • /
    • 2012
  • As the world wind energy market grows rapidly, the productions of wind power generation equipment have recently increased, but manufacturers are not able meet this requirement. Particularly offshore wind energy industry is one of the most popular renewable energy sectors. To generalize welding processes, the welding automation is considered for steel structure manufacturing in offshore wind energy to get high quality and productivity. Welding technology in construction of the wind towers is depended on progress productivity. In addition, the life of wind tower structures should be considered by taking account of the natural weathering and the load it endures. The root passes are typically deposited using Gas Tungsten Arc Welding(GTAW) with a specialized backing gas shield. Not only the validation consists of welders experienced in determining the welding productivity of the baseline welding procedure, but also the standard testing required by the ASME section IX and API1104 codes, toughness testing was performed on the completed field welds. This paper presents the welding characteristics of the root-pass welding of high tensile steel in manufacturing of offshore wind tower. Based on the result from welding experiments, optimal welding conditions were selected after analyzing correlation between welding parameters(peak current, background current and wire feed rate) and back-bead geometry such as back-bead width(mm) and back-bead height performing root-pass welding experiment under various conditions. Furthermore, a response surface approach has been applied to provide an algorithm to predict an optimal welding quality.

Ni 박판의 초음파 용착시 최적용착 조건 (Optimal Welding condition in Ultrasonic Welding of Ni steel sheet)

  • 서정석;박동삼
    • 한국기계가공학회지
    • /
    • 제9권2호
    • /
    • pp.47-52
    • /
    • 2010
  • Miniaturization and lightweight are increasingly the recent trend in the manufacture of electric appliances and machine parts. So technology of micro joining for joining materials is indispensable. This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and Horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Ni sheet and Ni sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 45% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.

Parameter Design and Analysis for Aluminum Resistance Spot Welding

  • Cho, Yong-Joon;Li, Wei;Hu, S. Jack
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.102-108
    • /
    • 2002
  • Resistance spot welding of aluminum alloys is based upon Joule heating of the components by passing a large current in a short duration. Since aluminum alloys have the potential to replace steels fur automobile body assemblies, it is important to study the process robustness of aluminum spot welding process. In order to evaluate the effects of process parameters on the weld quality, major process variables and abnormal process conditions were selected and analyzed. A newly developed two-stage, sliding-level experiment was adopted fur effective parameter design and analysis. Suitable ranges of welding current and button diameters were obtained through the experiment. The effects of the factors and their levels on the variation of acceptable welding current were considered in terms of main effects. From the results, it is concluded that any abnormal process condition decreases the suitable current range in the weld lobe curve. Pareto analysis of variance was also introduced to estimate the significant factors on the signal-to-noise (S/N) ratio. Among the six factors studied, fit-up condition is found to be the most significant factor influencing the SM ratio. Using a Pareto diagram, the optimal condition is determined and the SM ratio is significantly improved using the optimal condition.

표면 비드높이 예측을 위한 최적의 신경회로망 선정에 관한 연구 (A Study on the Selection of Optimal Neural Network for the Prediction of Top Bead Height)

  • 손준식;김인주;김일수;장경천;이동길
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.66-70
    • /
    • 2005
  • The full automation of welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to select an optimal neural network model.

  • PDF

자동차용 제동등의 TIG 제살용접 및 용가재 용접에 관한 연구 (A study on the TIG Autogenous Welding and Filler Material Welding Technology of Brake Lamp for Vehicle)

  • 한창수;조형기;김진평;박호;김동규
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.771-777
    • /
    • 2006
  • 최근 자동차에까지 환경친화적인 제품을 의무화하는 규제가 증가하고 있어 전구에 사용되는 납땜을 용접으로 대체하기 위한 연구가 필요하게 되었다. 본 연구에서는 기존의 측면 스폿용접의 문제점을 파악하여 TIG 제살용접공정을 개발하였고 용접시 깨지기 쉬운 유리부의 용접을 위해 세라믹 구조물을 개발하였다. 또한 바닥부 구멍을 메울 수 있도록 기존 바닥부 용가재 용접의 단점을 보완하여 최적 공정 파라미터를 선정하였다. 마지막으로 전구 수명 시험과 내진성 평가를 실시하여 용접된 제동등의 신뢰성을 확인할 수 있었다.

  • PDF

마할라노비스 거리를 이용한 압력용기 용접부 용접성 평가에 관한 연구 (A Study Evaluating Welding Quality in Pressure Vessel Using Mahalanobis Distance)

  • 김일수;이종표;이지혜;정성명;김영수;;박민호
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.22-28
    • /
    • 2013
  • Robotic GMA (Gas Metal Arc) welding process is one of widely acceptable metal joining process. The heat and mass inputs are coupled and transferred by the weld arc to the molten weld pool and by the molten metal that is being transferred to the weld pool. The amount and distribution of the input energy are basically controlled by the obvious and careful choices of welding process parameters in order to accomplish the optimal bead geometry and the desired quality of the weldment. To make effective use of automated and robotic GMA welding, it is imperative to predict online faults for bead geometry and welding quality with respect to welding parameters, applicable to all welding positions and covering a wide range of material thickness. MD (Mahalanobis Distance) technique was employed for investigating and modeling the GMA welding process and significance test techniques were applied for the interpretation of the experimental data. To successfully accomplish this objective, two sets of experiment were performed with different welding parameters; the welded samples from SM 490A steel flats. First, a set of weldments without any faults were generated in a number of repeated sessions in order to be used as references. The experimental results of current and voltage waveforms were used to predict the magnitude of bead geometry and welding quality, and to establish the relationships between weld process parameters and online welding faults. Statistical models developed from experimental results which can be used to quantify the welding quality with respect to process parameters in order to achieve the desired bead geometry based on weld quality criteria.