• Title/Summary/Keyword: Optimal value function

Search Result 533, Processing Time 0.027 seconds

Optimization of photovoltaic thermal (PV/T) hybrid collectors by genetic algorithm in Iran's residential areas

  • Ehyaei, M.A.;Farshin, Behzad
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.31-55
    • /
    • 2017
  • In the present study, PV/T collector was modeled via analysis of governing equations and physics of the problem. Specifications of solar radiation were computed based on geographical characteristics of the location and the corresponding time. Temperature of the collector plate was calculated as a function of time using the energy equations and temperature behavior of the photovoltaic cell was incorporated in the model with the aid of curve fitting. Subsequently, operational range for reaching to maximal efficiency was studied using Genetic Algorithm (GA) technique. Optimization was performed by defining an objective function based on equivalent value of electrical and thermal energies. Optimal values for equipment components were determined. The optimal value of water flow rate was approximately 1 gallon per minute (gpm). The collector angle was around 50 degrees, respectively. By selecting the optimal values of parameters, efficiency of photovoltaic collector was improved about 17% at initial moments of collector operation. Efficiency increase was around 5% at steady condition. It was demonstrated that utilization of photovoltaic collector can improve efficiency of solar energy-based systems.

Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface (지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정)

  • Choi, Daegyu;Kim, Jin Kwan;Lee, Jae Kwan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.

Optimal Network Design for the Estimation of Areal Rainfall (면적강우량 산정을 위한 관측망 최적설계 연구)

  • Lee, Jae-Hyeong;Yu, Yang-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.187-194
    • /
    • 2002
  • To improve the accuracy of the areal rainfall estimates over a river basin, the optimal design method of rainfall network was studied using the stochastic characteristics of measured rainfall data. The objective function was constructed with the estimation error of areal rainfall and observation cost of point rainfall and the observation sites with minimum objective function value were selected as the optimal network. As a stochastic variance estimator, kriging model was selected to minimize the error terms. The annual operation cost including the installation cost was considered as the cost terms and an accuracy equivalent parameter was used to combine the error and cost terms. The optimal design method of rainfall network was studied in the Yongdam dam basin whose raingauge numbers need to be enlarged for the optimal rainfall networks of the basin.

Optimal Controller Design of One Link Inverted Pendulum Using Dynamic Programming and Discrete Cosine Transform

  • Kim, Namryul;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2074-2079
    • /
    • 2018
  • Global state space's optimal policy is used for offline controller in the form of table by using Dynamic Programming. If an optimal policy table has a large amount of control data, it is difficult to use the system in a low capacity system. To resolve these problem, controller using the compressed optimal policy table is proposed in this paper. A DCT is used for compression method and the cosine function is used as a basis. The size of cosine function decreased as the frequency increased. In other words, an essential information which is used for restoration is concentrated in the low frequency band and a value of small size that belong to a high frequency band could be discarded by quantization because high frequency's information doesn't have a big effect on restoration. Therefore, memory could be largely reduced by removing the information. The compressed output is stored in memory of embedded system in offline and optimal control input which correspond to state of plant is computed by interpolation with Inverse DCT in online. To verify the performance of the proposed controller, computer simulation was accomplished with a one link inverted pendulum.

A Study on Developing the Optimal Sizing System for Ready-to-wear - Based on Elementary School Girls - (기성복의 최적 사이즈 시스템 개발을 위한 연구 - 학령기 여아를 중심으로 -)

  • Kim Ran-do;Lee Sang-youl;Kim Seon-young;Nam Yun-ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.8 s.145
    • /
    • pp.1102-1113
    • /
    • 2005
  • The propose of this study is to develop the optimal sizing system of ready-to-wear f3r elementary school girls using a newly invented statistical technique. The body measurements was classified by the method that equalizes the distribution of the subjects using the probability density function, to theoretically systemize a method to determine a size range of ready-to-wear for elementary school girls between 6 to 12 years old. The statistical method were 1) The total of 11 height groups, which size interval from one another is 6 cm that is an average height gap between each age. 2) In order to determine an approximate figure (m ${\times}$ n) to establish the appropriate sizes far each height group that fit to the combinations of bust and hip girth, which based on their means and standard deviations on the probability density curve to produce the standard normal distribution. 3) m and n were aligned by 4cm -the grading increments used for patterns making- and determined the size ranges by confirming the approximate figures of m and n. 4) The representative values were determined by an area ratio calculated by dividing the area determined from the range of bust and hip girth with the representative value. Considering the characteristics of subjects' distribution, the area ratios was used. 5) Weight was calculated by seeking a growth exponent for each age and multiplying it by the number of girls that fit to each size range. As sections that show the highest weight are more likely sought by the consumers, these sections were determined as the optimal size standards. 6) This optimal sizing system consists of sizes determined by the optimal size standards and its sizes are marked with height, bust and hip girth.

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

Design of bivariate step-stress partially accelerated degradation test plan using copula and gamma process

  • Srivastava, P.W.;Manisha, Manisha;Agarwal, M.L.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.21-49
    • /
    • 2016
  • Many mechanical, electrical and electronic products have more than one performance characteristics (PCs). For example the performance degradation of rubidium discharge lamps can be characterized by the rubidium consumption or the decreasing intensity the lamp. The product may degrade due to all the PCs which may be independent or dependent. This paper deals with the design of optimal bivariate step-stress partially accelerated degradation test (PADT) with degradation paths modelled by gamma process. The dependency between PCs has been modelled through Frank copula function. In partial step-stress loading, the unit is tested at usual stress for some time, and then the stress is accelerated. This helps in preventing over-stressing of the test specimens. Failure occurs when the performance characteristic crosses the critical value the first time. Under the constraint of total experimental cost, the optimal test duration and the optimal number of inspections at each intermediate stress level are obtained using variance optimality criterion.

Optimal Design of Interior Permanent Magnet Synchronous Motors Using Genetic Algorithm (유전 알고리즘을 이용한 매입형 영구자석 동기전동기의 최적 설계)

  • 조동혁;심동준;천장성;정현교
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.258-263
    • /
    • 1996
  • Air gap flux density and d, q axis inductances of the Interior Permanent Magnet Synchronous Motor obtained by equivalent magnetic circuit method are compensated using results from Finite Element Method. For optimal design, the efficiency of the motor is taken as the objective function, and Genetic Algorithm finds the value of design parameters which maximize the objective function. The result of optimal designed motor is examined by comparison with proto-type motor.

  • PDF

AN APPROACH FOR SOLVING OF A MOVING BOUNDARY PROBLEM

  • Basirzadeh, H.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.97-113
    • /
    • 2004
  • In this paper we shall study moving boundary problems, and we introduce an approach for solving a wide range of them by using calculus of variations and optimization. First, we transform the problem equivalently into an optimal control problem by defining an objective function and artificial control functions. By using measure theory, the new problem is modified into one consisting of the minimization of a linear functional over a set of Radon measures; then we obtain an optimal measure which is then approximated by a finite combination of atomic measures and the problem converted to an infinite-dimensional linear programming. We approximate the infinite linear programming to a finite-dimensional linear programming. Then by using the solution of the latter problem we obtain an approximate solution for moving boundary function on specific time. Furthermore, we show the path of moving boundary from initial state to final state.

A Study on the File Allocation in Distributed Computer Systems (분산 컴퓨터 시스템에서 파일 할당에 관한 연구)

  • 홍진표;임재택
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.571-579
    • /
    • 1990
  • A dynamic relocation algorithm for non-deterministic process graph in distributed computer systems is proposed. A method is represented for determining the optimal policy for processing a process tree. A general database query request is modelled by a process tree which represent a set of subprocesses together with their precedence relationship. The process allocation model is based on operating cost which is a function fo selection of site for processing operation, data reduction function and file size. By using expected values of parameters for non-deterministic process tree, the process graph and optimal policy that yield minimum operating cost are determined. As process is relocated according to threshold value and new information of parameters after the execution of low level process for non-deterministic process graph, the assigned state that approximate to optiaml solution is obtained. The proposed algorihtm is heuristic By performing algorithm for sample problems, it is shown that the proposed algorithm is good in obtaining optimal solution.

  • PDF