• Title/Summary/Keyword: Optimal tuning

Search Result 421, Processing Time 0.022 seconds

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

Load Frequency Control using Parameter Self-Tuning Fuzzy Controller (파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어)

  • 이준탁;정동일;안병철;주석민;정형환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.52-65
    • /
    • 1997
  • This paper presents a design technique of self tuning fuzzy controller for load frequency control of power system. The proposed parameter self tuning algorithm of fuzzy controller is based on the gradient method using four direction vectors which make error between inference values of fuzzy controller and output values of the specially selected optimal controller reduce steepestly. Using input-output data pair obtained from optimal controller, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed gradient method. The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones for reductions of undershoot and steady-state load frequency deviation and for minimization of settling time.

  • PDF

Parameter Optimization of Controllers for Forward Converters Using Genetic Algorithms (유전자 알고리즘을 이용한 포워드 컨버터 제어기의 파라메터 최적화)

  • Choi, Young-Kiu;Woo, Dong-Young;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.177-182
    • /
    • 2010
  • The forward convener is one of power supplies used widely. This paper presents parameter tuning methods to obtain optimal circuit element values for the forward converter to minimize the output voltage variation under various load changing environments. The conventional method using the concept of the phase margin is extended to have optimal phase margin that gives slightly improved performance in the output voltage response. For this, the phase margin becomes the tuning parameter and is optimized with the genetic algorithm. Next, the circuit element values are directly chosen as the tuning parameters and also optimized using the genetic algorithm to have very improved performance in the output voltage control of the forward converter.

Design of a hybrid fuzzy controller with the optimal auto-tuning method (최적 자동동조 방법에 의한 하이브리드 퍼지제어기의 설계)

  • Oh, Sung-Kwun;Ahn, Tae-Chon;Hwang, Hyung-Soo;Park, Jong-Jin;U, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • 퍼지논리제어기는 산업응용에 광범위하게 연구되고 있으며, 계속적으로 사용되고 있다. 그러나 퍼지집합의 조정을 통해 최적규칙을 구축하기 위하여, 시행착오에 의한 매우 능숙한 기술이 요구된다. 이 논문에서는 첫째로, 퍼지논리제어기와 기존의 PID 제어기로 구성된 하이브리드 퍼지제어기를 제안한다. 즉, 시스템의 제어 입력은 퍼지변수로서, 과도상태에서의 FLC출력과 정상상태에서의 PID 출력의 컨벡스(convex) 결합이다. 둘째로, 간략추론법과 개선된 컴플렉스방법을 이용한 강력한 자동동조알고리즘이 퍼지논리제어기의 성능을 자동적으로 개선하기 위하여 사용된다. 이방법은 오차변화율및 제어출력의 제한조건에 의하여, 언어제어규칙, 퍼지계수(scaling factor), PID계수, 하이브리드 퍼지논리제어기의 하중계수의 최적값을 자동적으로 추정한다. 시뮬레이션은 시간지연 플랜트및 하수처리시스템의 활성오니공정과 같은 비선형 플랜트에서 실행되고, 시스템의 성능은 평가지수 ITAE로 평가된다.

  • PDF

A Study on the Load Frequency control of Power System Using Neural Network Self Tuning PID Controller (신경회로망 자기종조 PID 제어기를 이용한 전력계통의 부하주파수제어에 관한 연구)

  • 정형환;김상효;주석민;김경훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.29-38
    • /
    • 1998
  • This paper proposes the neural network self-tuning PID controller for the load frequency control of 2- areas power system, namely, the prompt convergence of frequency and tie-line power flow deviation. The neural network applied to computer simulation consists of neurons of two inputs, ten hiddens and tliree outputs layer. Neurons of two inputs layer receive the error and its change rate of the system and cutputs layer consists of three neurons for the parameters of the PID controller. The simulation results shows that the proposed neural network self-tuning PID controller is superior to conventional control t~:chniques(Optimal, PID) in dynamic response and control performance.

  • PDF

An Analytic solution for the Hadoop Configuration Combinatorial Puzzle based on General Factorial Design

  • Priya, R. Sathia;Prakash, A. John;Uthariaraj, V. Rhymend
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3619-3637
    • /
    • 2022
  • Big data analytics offers endless opportunities for operational enhancement by extracting valuable insights from complex voluminous data. Hadoop is a comprehensive technological suite which offers solutions for the large scale storage and computing needs of Big data. The performance of Hadoop is closely tied with its configuration settings which depends on the cluster capacity and the application profile. Since Hadoop has over 190 configuration parameters, tuning them to gain optimal application performance is a daunting challenge. Our approach is to extract a subset of impactful parameters from which the performance enhancing sub-optimal configuration is then narrowed down. This paper presents a statistical model to analyze the significance of the effect of Hadoop parameters on a variety of performance metrics. Our model decomposes the total observed performance variation and ascribes them to the main parameters, their interaction effects and noise factors. The method clearly segregates impactful parameters from the rest. The configuration setting determined by our methodology has reduced the Job completion time by 22%, resource utilization in terms of memory and CPU by 15% and 12% respectively, the number of killed Maps by 50% and Disk spillage by 23%. The proposed technique can be leveraged to ease the configuration tuning task of any Hadoop cluster despite the differences in the underlying infrastructure and the application running on it.

Optimal placement and tuning of multiple tuned mass dampers for suppressing multi-mode structural response

  • Warnitchai, Pennung;Hoang, Nam
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2006
  • The optimal design of multiple tuned mass dampers (multiple TMD's) to suppress multi-mode structural response of beams and floor structures was investigated. A new method using a numerical optimizer, which can effectively handle a large number of design variables, was employed to search for both optimal placement and tuning of TMD's for these structures under wide-band loading. The first design problem considered was vibration control of a simple beam using 10 TMD's. The results confirmed that for structures with widelyspaced natural frequencies, multiple TMD's can be adequately designed by treating each structural vibration mode as an equivalent SDOF system. Next, the control of a beam structure with two closely-spaced natural frequencies was investigated. The results showed that the most effective multiple TMD's have their natural frequencies distributed over a range covering the two controlled structural frequencies and have low damping ratios. Moreover, a single TMD can also be made effective in controlling two modes with closely spaced frequencies by a newly identified control mechanism, but the effectiveness can be greatly impaired when the loading position changes. Finally, a realistic problem of a large floor structure with 5 closely spaced frequencies was presented. The acceleration responses at 5 positions on the floor excited by 3 wide-band forces were simultaneously suppressed using 10 TMD's. The obtained multiple TMD's were shown to be very effective and robust.

Gain Scheduling in a 6-Axis Articulated Robot Based on LabVIEW (LabVIEW 기반 6축 수직다관절 로봇의 게인스케쥴링 구현 연구)

  • Kim, M.S.;Chung, W.J.;Kim, S.B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.318-324
    • /
    • 2014
  • Recent years have witnessed a growing demand for a wide variety of high-performance industrial robots. In this paper, for accurate gain tuning of a 6-axis articulated industrial robot with reduced noise, a program routine for a dynamic signal analyzer (DSA) using the frequency response method will be programmed using $LabVIEW^{(R)}$. Then, robot transfer functions can be obtained experimentally using the frequency response method with the DSA program. Data from the robot transfer functions are transformed into Bode plots, based on which an optimal gain tuning will be executed. Gain tuning can enhance the response quality of the output signal for a given input signal during real-time control of the robot. The effectiveness of our proposed technique will be verified by implementation with a (lab-manufactured) 6-axis articulated industrial robot (hereinafter called "RS2") and comparison with the zero position gain tuning, as well as other positions.

A Numerical Study on Acoustic Tuning of Quarter-Wave Resonators in a Model Combustion Chamber (연소실에서 1/4파장 공명기의 주파수 동조에 대한 수치적 연구)

  • Park, Ju-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.281-284
    • /
    • 2009
  • Acoustic tuning frequency of quarter-wave resonators is investigated numerically to suppress combustion instability in a liquid rocket engine. A quarter-wave resonator is adopted, which was designed from the cold acoustic test for optimal damping condition. First, in a model combustion chamber scaled down from a full-scale chamber, reactive flow filed is analyzed numerically and acoustic-pressure responses are examined. Next, thermodynamic properties in the resonators are predicted. Based on the data, frequency tuning method is studied. The optimum tuning length of each resonator is proposed and thereby, sufficient damping is produced.

  • PDF