• Title/Summary/Keyword: Optimal treatment conditions

Search Result 780, Processing Time 0.028 seconds

Derivation of Optimal Conditions and Effect of Treated Water Quality for Treatment of Drinking Water using Inorganic Membrane (무기막을 사용한 먹는물 처리 시 최적의 조건 도출 및 처리수질에 미치는 영향)

  • Won, Chan-Hee
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.543-549
    • /
    • 2018
  • In this study, the treatment efficiency of inorganic membrane according to the flux that blending raw water was investigated at the laboratory level. Based on the results of each blending and flux, we obtained the best efficiency according to each measurement item. The treatment efficiencies were different depending on the raw water and treatment amount of the treated water. Especially, turbidity removal efficiency was high. In the case of $UV_{254}$, the removal efficiency according to the concentration of the raw water and the removal efficiency according to the flux of the treated water showed a maximum of 69 % to minimum of 48 %. In the case of TOC and DOC, the processing efficiency was 22 % and 28 %, respectively, because the organic value of the raw water was low. These results suggest that there is an optimal process to effectively remove contaminants from the inorganic membrane process, and it is necessary to optimize it according to operating conditions.

Studies on the Optimal Conditions of Sterilization for Streptococcus pyogenes (Part 1) Effect of Heat Treatment on Typical Death Rate (항암활성을 지닌 Streptococcus pyogenes의 적정 살균조건에 관한 연구 (제 1보) 살균조건에 미치는 열 처리의 영향)

  • 유주현;김성욱;배종찬;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.231-236
    • /
    • 1981
  • Studies were made on the optimal conditions of sterilization for Streptococcus pyogenes treated with heat. The results were as follows: The optimal temperature on growth of Streptococcus pyogenes was 37$^{\circ}C$ and mean generation time was 20 minutes in the logarithmic growth phase. The suspension of Streptococcus pyogenes, adjusted to pH 6-9 and treated with heat at 5$0^{\circ}C$, showed logarithmic death rate. Specific death rate constant(k) values at pH 6-9 were 0.1448, 0.1194. 0.1273 and 0.1707 minute$^{-1}$ , respectively.

  • PDF

Optimization of Zero-valent Iron Technology for Color Removal from Real Dye Wastewater (염색폐수 색도 제거를 위한 영가철 기술 최적화)

  • Lee, Jae Woo;Oh, Young Khee;Cha, Daniel K.;Lee, Taewon;Ko, Kwang Baik
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.758-763
    • /
    • 2009
  • This study presents the optimal conditions of zero-valent iron (ZVI) pretreatment for color removal from real dye wastewater. Removal of color by ZVI was strongly subject to the acidity of the wastewater buffering the pH increased after ZVI reduction. The real dye wastewater did not contain a sufficient amount of acidity and thus it was necessary to supplement acid to the dye wastewater before treatment. In continuous operation of iron column, the empty bed contact time (EBCT) and initial pH were varied to find the optimal conditions. A non-linear regression model fitted well the experimental result predicting that the optimal EBCT and pH for 80% removal efficiency was present in the range of 57~90 and 5~5.9, respectively. Color of column effluents could be further removed in the following biological oxidation step and the biodegradability of wastewater was also enhanced after iron pretreatment.

Isolation and Culture Characteristics of Strains for Color Removal of Disperse Dyes (분산성 염료의 색도제거를 위한 균주의 분리 및 성장 특성)

  • 조무환;허만우;한명호;강건우
    • Textile Coloration and Finishing
    • /
    • v.12 no.1
    • /
    • pp.25-31
    • /
    • 2000
  • In order to decolorize disperse dyes by using biological treatment process, a strain which has potential ability to degrade disperse dyes was isolated from natural system. To increase the removal efficiency of decolorization in the aqueous solutions, the optimal condition of decolorization by this strain was investigated, and continuous plant test was also developed. The optimal culture conditions of temperature and pH were found to be 4$0^{\circ}C$ and 8.5~9, respectively. When yeast extract was mixed with polypeptone at the mixing ratio of 1:1 as a nitrogen source, decolorization efficiency was highest(93%) among the nitrogen sources. The strain to be screened was excellent to adjust to pH, and it seems to be have ability to control pH needed to growth. The optimal culture conditions in concentration of $MgSO_4\cdot{7H}_2O$ and $KH_2PO_4$ were 0.1%(w/v) and 0.2%(w/v). The result of continuous plant process using wastewater was as following : $COD_{Mn}$ removal efficiency was over than 50%, and this strain was very excellent in decolorization-efficiency for the wastewater of Taegu dyeing complex.

  • PDF

Production of Pyrogallol from Gallic Acid by Erwinia sp. (Erwinia sp.에 의한 Gallic Acid로부터 Pyrogallol의 생산)

  • 박병화;황인균;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.665-671
    • /
    • 1994
  • For the production of pyrogallot from gallic acid, about 100 strains of bacteria capable of assimilating gallic acid as a sole carbon and energy source were isolated from the soil. JH- 004 strain showing the highest activity of gallate decarboxy#lase was selected from them and identi- fied as Erwinia sp. The optimal conditions for the production of pyrogallol from gallic acid were examined. The resting cells of JH-004 cultured in a complex medium containing 0.2%(w/v) gallic acid were prepared after the treatment of the pellet with a freezing and thawing, and used as a enzyme source. The reaction mixtures for the maximal production of pyrogallol were shown to be 6 g/l of resting cells and 15 g/l of gallic acid in 25 mM potassium phosphate buffer. The optimal pH for the reaction was 5.0 and the optimal temperature was 35$\circ$C . Additionally, Triton X-100(0.01%, w/v) was found to be most effective for the production of pyrogallol. Under the above conditions, 10.27 g/l of pyrogallol was produced from 15 g/l of gallic acid after incubation of 35 hrs. This amount of pyrogallol corresponds to a 92.37% yields, based on gallic acid.

  • PDF

Optimal Electropolishing Condition of Austenitic Stainless Steel Specimens for Slow Strain Rate Tensile Testing (오스테나이트 스테인리스강 저속인장시험편의 최적 전해연마 특성)

  • Min-Jae Choi;Eun-Byeoul Jo;Dong-Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.457-465
    • /
    • 2023
  • Irradiation-assisted stress corrosion cracking (IASCC) is one of the main degradation mechanisms of austenitic stainless steels, which are used as reactor internal materials. Slow strain rate testing (SSRT) has been widely applied to evaluate the IASCC initiation characteristics of proton-irradiated tensile specimens. Tensile specimens require low surface roughness for micro-crack observation, and electropolishing is the most important specimen pre-treatment process used for this. In this study, optimal electropolishing conditions were examined through analyzing results of polarization experiments and surface roughness measurements after electropolishing. Corrosion cell and electropolishing equipment were fabricated for polarization tests and electropolishing experiments using SSRT specimens. The experimental parameters were electropolishing time, current density, electrolyte temperature, and stirring speed. The optimal electropolishing conditions for SSRT tensile specimens made of type 316 stainless steel were evaluated as a polishing time of 180 seconds, a current density of 0.15 A/cm2, an electrolyte temperature of 60 ℃, and a stirring speed of 200 RPM.

Freeze Treatment of Sludge for the Biogas Production from Brown Macroalgae (슬러지 냉동처리에 의한 갈조류로부터 바이오가스 생산)

  • Kim, Ji-Youn;Jeong, Haeng Soon;Woo, Dae-Sik;Kim, Sang-Min;Kim, In Soo;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.594-598
    • /
    • 2012
  • In the present study, biogas was produced from the anaerobic digestion of marine macroalgae (Laminaria japonica) biomass. The optimal anaerobic condition for producing the sludge was the freeze treatment at $-70^{\circ}C$ for 20 min. Total amounts of hydrogen and methane gas produced were 667.28 mL/L and 3420.24 mL/L, respectively, which were 2.7 and 3.4 times greater than that in the control group. Freeze treatment of sludge produced the maximum biogas under an initial optimum pH of 7.0 and the maximum biomass at an initial optimum pH of 8.0. We confirmed that biogas production was greatly reduced under acidic conditions compared to that under alkaline conditions. Sludge was freeze treated, and the biomass and sludge production was optimal the total amounts of hydrogen and methane gas produced were 643.73 mL/L and 4291.6 mL/L, respectively, which were 2.6 and 4.3 times greater than in the control group. Also the results showed that under optimal conditions in a 5-L bioreactor, a maximum of 1605.03 mL/L of hydrogen and 4593.71 mL/L of methane gas could be produced by the substrate contained in the marine macroalgae biomass.

Production of Hydrolyzed Red Ginseng Residue and Its Application to Lactic Acid Bacteria Cultivation

  • Kim, Dong-Chung;In, Man-Jin
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.321-326
    • /
    • 2010
  • Enzymatic treatment conditions for red ginseng residue (RGR) were investigated to apply RGR as a microbial medium. Polysaccharide hydrolyase and protease were screened to obtain high solid and carbohydrate yields, and a good degree of carbohydrate hydrolysis. The optimal dosage and reaction time for Viscozyme, the chosen polysaccharide hydrolyase, were found to be 1.0% (w/w) and 3 h, respectively. Of the tested proteases, Flavourzyme, whose optimal dosage was 0.5% (w/w), was selected. Co-treatment with the optimal dosages of Flavourzyme and Viscozyme increased solid yield, carbohydrate yield, and degree of carbohydrate hydrolysis by 76%, 65%, and 1,865%, respectively, over levels in non-treated RGR. The culture characteristics of Leuconostoc mesenteroides strain KACC 91459P grown in enzymatically hydrolyzed red ginseng residue (ERGR) and RGR suspensions were compared. After cultivation for 6 h, the viable cell counts of both cell suspensions rapidly increased to $1.3{\times}10^9$ colony-forming units (CFU)/g. Moreover, while the viable cell population drastically decreased to $2.4{\times}10^6\;CFU/g$ for cells grown in RGR medium, it was maintained in cells fermented in ERGR medium for 24 h.

Evaluation of the Scar Treatment using Near Infrared Diffuse Reflectance Spectroscopy (근적외선 확산반사 분광법을 이용한 흉터치료 평가)

  • Jang, I.J.;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Monitoring of dermal collagen is important to assess various scar conditions, and many diagnostic methods have been applied to quantify collagen contents in scar tissue. In this study, Monte Carlo simulation was used to evaluate diffuse reflectance distributions in scar condition by a near-infrared laser source. The results showed that the effective distance of the light source and the detector was 2 mm to monitor the various scar conditions using diffuse reflectance spectroscopy. This study may suggest to the optimal design for a near infrared diffuse reflectance spectroscopy during the scar treatment.

Isolation and Its Optimal Culture Condition for High Agarase-Producing Mutant (한천분해효소의 고생산성 변이주의 분리 및 최적배양조건)

  • 황선희;하순득;김봉조;김학주;공재열
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.351-357
    • /
    • 1999
  • A marine bacterium Bacillus cereus ASK202, agarase producing strain, was treated with some mutagenic agents, ultraviolte(UV), 1-methyl-3-nitro-1-nitrosoguanidine(NTG), and ethyl methane sulfonate(EMS), several times for the increasing of the agarase production After mutagen treatment, we isolated one mutant strain treated with NTG showed the highest stability and agarase productivity and named as Bacillus cereus ASK202-N3. This Bacillus cereus ASK202-N3 strain was well grown in the modified marine medium containing 0.5%(w/v) agar, 0.3%(w/v) yeast extract, and 5.0%(w/v) NaCl, and the optimal initial pH, temperature and culture time were 7.8, $25^{\circ}C$ and 32h, respectively. In the optimal culture conditions, the agarase production was increased to 5.3 fold(850units/L) compared to that of the wild type.

  • PDF