• Title/Summary/Keyword: Optimal strengthening

Search Result 85, Processing Time 0.021 seconds

The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite (금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구)

  • 백영민;이상관;엄문광;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

Cooperative Management Framework for the Transboundary Coastal Area in the Western Part of Korean Peninsula (서해연안 접경지역 현황 및 남북한 협력관리 방안)

  • Nam, Jung-Ho;Kang, Dae-Seok
    • Journal of Environmental Policy
    • /
    • v.3 no.2
    • /
    • pp.1-29
    • /
    • 2004
  • As a result of very limited access due to the military confrontation between South and North Koreas for the last five decades, ecosystems in the transboundary coastal area in the western part of Korean Peninsula have been protected from intensive developments in both Koreas. In the core of the recent two military collisions lies the fishery resources represented as blue crabs as well as the politico-military aspect. Increasing development pressures from both sides as reflected in the South Korea supporting the construction of an industrial complex in Kaesung, North Korea, is the main factor which threatens the sustainable resource base in this region. This research is aimed to develop a cooperative management system for the well-preserved transboundary coastal area between South Korea and North Korea. The Pressure-State-Response (PSR) framework of OECD was used to assess environmental conditions, socioeconomic pressures on the environment of the region, and policy responses of both Koreas to those pressures. Protection of ecosystems, peace settlement, and prosperity of the region and the entire peninsula were proposed as the management goals of the cooperative management system. The designation of the area as a Co-managed Marine Protected Area System (COMPAS) through close cooperation among South Korea, North Korea, and international entities was suggested as a way to achieve those goals. Revision of legal and institutional mechanisms, strengthening knowledge base for optimal COMPAS management, integration of the marine protected area and DMZ (demilitarized zone) ecosystem, enhancing stakeholder participation, building international partnership, and securing financial resources were presented as six management strategies.

  • PDF

Effect of flexion degrees in elbow joint on muscle activation of the extensor carpi radialis and biceps brachii muscles in healthy young adults

  • Kim, Gap-Cheol;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.120-124
    • /
    • 2016
  • Objective: Chronic lateral epicondylitis is a condition which becomes sore and tender on the lateral side of the elbow joint damaged from overuse and repetitive use of the extensor muscles of the forearm. The purpose of this study was to investigate the effects of flexion degrees in the elbow joint on extensor carpi radialis longus and brevis and biceps brachii muscles in individuals with healthy young adults. The main purpose of this study was to suggest the feasibility of optimal elbow angle during therapeutic eccentric exercise with resistance for strengthening of wrist extensors. Design: Cross-sectional study. Methods: Thirty health young adults (male 15, female 15) participated in this study. This study measured muscle activation in four different conditions of elbow flexion, $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, and $90^{\circ}$ during eccentric exercise with weight loading in wrist extensors, extensor carpi radialis longus and brevis and biceps brachii muscles using surface electromyography. Results: The muscle activation of extensor carpi radialis showed a negative relationship with the degrees of elbow joint flexion. With increasing elbow flexion angles, the ECRL muscle activation amount was significantly lower (p<0.05). In contrast, the muscle activation of the ECRB muscle activation amount was significanlty higher (p<0.05). Conclusions: This study suggests that the eccentric exercise of wrist extension with selected activation of wrist extensor muscles according to elbow flexion positions, and suggests that the extensor carpi radialis longus and brevis will need to be strengthened for preventing and treating chronic lateral epicondylitis regardless of degrees of elbow joint flexion.

Improving Yield Strength of A694-F70 Flange Manufactured by Hot Forging Process (열간 단조 제품 A694-F70 플랜지의 항복강도 향상)

  • Woo, Ta-Kwan;Lee, Hyun-Woo;Jeon, Chung-Hwan;Chang, Young-June;Kim, Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1068-1073
    • /
    • 2010
  • A welding neck flange is widely used for an interconnection between pipes. It is produced by a hot forging process, and required high yield strength under the high pressure condition, like a deep-sea. Generally, to increase yield strength, a increasing of carbon content is used, however a carbon content of welding neck flange is limited to 0.47. So, in this study, a strengthening by grain refinement without changing carbon content is used to increase yield strength. Taguchi method and FEM are used for the optimization of forging process and the experiment for the yield strength of the prototype with the optimal forging process is performed for validity.

How to Increase Small Retailers' Competitiveness Against Super-Supermarket(SSM) (SSM에 대응한 중소 슈퍼마켓의 경쟁력 강화방안)

  • Park, Ju-Young;Shin, Ki-Dong
    • Journal of Distribution Research
    • /
    • v.15 no.5
    • /
    • pp.1-18
    • /
    • 2010
  • Recent rapid growth of Super-Supermarket(SSM) may be the last process of penetration of big retailers' into the grocery market where small supermarkets have dominated for the past several decades. Anti-SSM movement led by small supermarket owners is mainly due to the fear of shaky viability. The authors believe that the ultimate solution should be strengthening the competitiveness of small retailers. This study concludes that satisfying customers will make small retailers more sustainable. The study suggests the improvement of merchandising and customer services. In particular, the study performed an ideation survey for developing services suitable for supermarket customers. The study suggests service alternatives optimal for small retailers through confirmation survey of 300 consumers.

  • PDF

Characteristics of Expanded Graphite Filled Conductive Polymer Composites for PEM Fuel Cell Bipolar Plates

  • Oh, K.S.;Heo, S.I.;Yun, J.C.;Yang, Y.C.;Han, K.S.
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.259-275
    • /
    • 2008
  • This study aims to optimize the mechanical and electrical properties of electrically conductive polymer composites (CPCs) for use as a material of bipolar plates for PEM fuel cells. The thin CPCs consisting of conductive fillers and polymer resin were fabricated by a preform molding technique. Expanded graphite (EG), flake-type graphite (FG) and carbon fiber (CF) were used as conductive fillers. This study tested two types of CPCs, EG/FG filled CPCs and EG/CF filled CPCs, to optimize the material properties. First, the characteristics of EG/FG filled CPCs were investigated according to the FG ratio for 7 and $100{\mu}m$ sized FG. CPCs using $100{\mu}m$ FG showed optimal material properties at 60 wt% FG ratio, which were an electrical conductivity of 390 S/cm and flexural strength of 51 MPa. The particle size was an important parameter to change the mechanical and electrical behaviors. The flexural strength was sensitive to the particle size due to the different levels of densification. The electrical conductivity also showed size-dependent behavior because of the different contributions to the conductive network. Meanwhile, the material properties of EG/CF filled CPCs was also optimized according to the CF ratio, and the optimized electrical conductivity and flexural strength were 290 S/cm and 58 MPa, respectively. The electrical conductivity of this case decreased similarly to the EG/FG filled case. On the other hand, the behavior of the flexural strength was more complicated than the EG/FG filled case, and the reason was attributed to the interaction between the strengthening effect of CF and the deterioration of voids.

Mechanical Properties of Filling Materials for Bored Pile in Rock (암반매입말뚝을 위한 주면고정액의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Shin, Mingun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.637-645
    • /
    • 2017
  • Jeju Island is composed of irregular volcanic rock layers formed by several volcanic activities. Since structure such as the offshore wind turbine has to support considerably large over turning moment due to long distance from foundation to load point and relatively large horizontal load. Pile foundations are needed to economically support such structure even in the case of rock layer. Therefore, in this study, mechanical performances are estimated by mixing ratio of water, cement, and sand to figure out optimal mixing ration of filling material for pile penetrated to rocky layers, and outcomes of this study are compared and analyzed with results of other researches. In the same conditions, mechanical performances of the mortar (S/(S+C)=20~40%) are better than those of cement paste and soil cement. On the basis of major outcome of this study, appropriate range of mixing and a strengthening model are suggested.

A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers

  • Hu, Yu;Yang, Jian;Baniotopoulos, Charalambos C.;Wang, Feiliang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.487-500
    • /
    • 2020
  • Stiffeners can be utilised to enhance the strength of thin-walled wind turbine towers in engineering practise, thus, structural performance of wind turbine towers by means of different stiffening schemes should be compared to explore the optimal structural enhancement method. In this paper two alternative stiffening methods, employing horizontal or vertical stiffeners, for steel tubular wind turbine towers have been studied. In particular, two groups of three wind turbine towers of 50m, 150m and 250m in height, stiffened by horizontal rings and vertical strips respectively, were analysed by using FEM software of ABAQUS. For each height level tower, the mass of the stiffening rings is equal to that of vertical stiffeners each other. The maximum von Mises stresses and horizontal sways of these towers with vertical stiffeners is compared with the corresponding ring-stiffened towers. A linear buckling analysis is conducted to study the buckling modes and critical buckling loads of the three height levels of tower. The buckling modes and eigenvalues of the 50m, 150m and 250m vertically stiffened towers were also compared with those of the horizontally stiffened towers. The numbers and central angles of the vertical stiffeners are considered as design variables to study the effect of vertical stiffeners on the structural performance of wind turbine towers. Following an extensive parametric study, these strengthening techniques were compared with each other and it is obtained that the use of vertical stiffeners is a more efficient approach to enhance the stability and strength of intermediate and high towers than the use of horizontal rings.

Changes in Muscle Activity of the Serratus Anterior According to Surface Tilt Angle During Push-up Plus Exercise in Subjects With Winged Scapula

  • Gu, Qian;Kim, Tae-ho;Chun, Jung-genn
    • Physical Therapy Korea
    • /
    • v.26 no.4
    • /
    • pp.29-34
    • /
    • 2019
  • Background: The serratus anterior is one of the most important muscle for maintaining good scapular alignment in the shoulder joint. The pectoralis major and upper trapezius may also compensate for weak serratus anterior muscles. The push-up plus exercise has been identified as the optimal exercise for maximum activation of the serratus anterior. Objects: The purpose of this study was to examine differences in surface electromyography (EMG) activity of upper trapezius, pectoralis major, and serratus anterior muscles during push-up plus exercises on variously angled surfaces in subjects with winged scapula. Methods: Sixteen subjects with winged scapula (male=5, female=11) volunteered for this study. The subjects performed push-up plus exercise on four different tilt angles, namely $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, and $90^{\circ}$. EMG activities in the serratus anterior, upper trapezius, and pectoralis major muscles during performance of push-up plus exercise were measured in all subjects. Data were processed from repeated measures one-way analysis of variance. Results: There was significant difference in the muscle activity of the serratus anterior on the different surface angles (p<.05). The results of the post-hoc analysis showed significantly greater serratus anterior muscle activity on a surface at a $0^{\circ}$ angle than at others tilt angles (p<.05). There was also significant difference in the ratio of serratus anterior to upper trapezius and serratus anterior to pectoralis major across the four surfaces (p<.05), and post-hoc analysis showed significantly greater values on the $0^{\circ}$ surface than on other tilts (p<.05). Conclusion: This study found that performing push-up plus exercises on a flat surface with $0^{\circ}$ and $30^{\circ}$ tilt angle achieves high activation of the serratus anterior muscle for selective strengthening. It can also take into account the sequential application, which is first performed at a $30^{\circ}$ and at a $0^{\circ}$ tilt angle for and effective but not excessive muscle activation.

Analysis of Farmers' Intention to the Legislation of Organic Seeds (유기종자 법제화에 대한 농업인의 의향 분석)

  • Shim, Chang-Ki;Kim, Min-Jeong;Ko, Byong-Gu;Park, Jong-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • The questionnaire survey was conducted on 225 farmers in Gyeonggi-do, Jeollanam-do and Jeollabuk-do. A total of 189 (84%) farmers responded. 72% of the respondents were males, 50.3% were aged 60 or older, and 51.3% had less than 5 years of farming experience. 78.8% of the respondents are pesticide-free, and 44.4% of respondents have less than 0.5 ha of farming scale. 61.4% of the cultivated crops were vegetable crops. The order of seeds and seedlings to buy was tomato (23.3%), cucumber (12.2%) and pepper (10.6%). The cost of purchasing seeds ranged from a minimum of 100,000 won to a maximum of 5 million won. 78.3% of respondents answered that they well-knew or knew about organic seeds. 78.3% of respondents answered that they knew or knew about organic seeds. Of the positive effects of mandatory use of organic seeds, 41.3% of respondents said they would increase confidence in organic certification. However, 41% of respondents who opposed the mandatory use of organic seeds said that "The strengthening of regulations will make organic agriculture more difficult." When the use of organic seeds is mandatory, 43.4% of the respondents favor direct support for the purchase of organic seeds, which should be supported politically by the state. When organic seeds were supplied, the disease resistant seeds (53.4%) was the preferred characteristic of organic seeds. For the optimal price of organic seeds, 38.6% of respondents wanted the same price as the commercialized conventional seed. In this study, the questionnaire was conducted for three major organic farming regions, but many of the respondents were judged to have a legal position on the mandatory use of organic seeds. Therefore, the results of this study can be used as a basic data for reviewing the legislation on the organic seed production and distribution suitable for the situation of Korean organic farming.