• Title/Summary/Keyword: Optimal state-feedback controller

Search Result 96, Processing Time 0.026 seconds

A Study of Optimal Load Follow Control in Pressurized Water Reactors (감압경수형 원자로의 최적부하추종제어에 관한 연구)

  • 김락규;박상휘
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.12
    • /
    • pp.491-497
    • /
    • 1985
  • An applicaton of the linear optimal control theory to the problem or load follow control in pressurized water reactors (PWR) is investigated. In order to perform the steady-state and load follow operation in PWR, a nonlinear model for the reactor and steam generator is derived and linearized at 50% rated power. Simulation tests are performed for 10% demanded load. Comparing the dynamic response of the newly developed optimal load follow controller with those of the integral error feedback controller proposed by Yang, the rise time of dynamic response of the former is about 15 seconds faster than those of the latter, thus the results indicate that the fast response of the optimal load follow controller is verified. The results of this work are directly applicable to the design of the load follow control systems for commercially operated PWRs.

  • PDF

A Controller Design for Switching Regulator Using an Optimal Output PIM Control with Feedforward Comensation (입력보상 및 최적 출력 PIM 제어를 적용한 스위칭 직류 변환기의 제어기 설계)

  • 고정호;권봉환;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.188-196
    • /
    • 1987
  • This paper describes a design method for the buck type switching regulator to improve transient and steady state performances. Necessary design considerations on the power stage are given before designing the controller to obtain better trandient responses with less control effort and a feedforward compensation is also given to effectively improve the steady state performance. In the design of the controller, a PIM (proportional-integral-measurable) control method with optimized constant feedback gains is presented to get better tansient and steady state performances without complicating the implementation of controller. Computer simulations and experimental results are given to show the usefulness of the presented technique.

  • PDF

Motion Control of Inchworm using Input Shaping and Genetic Algorithm (입력 성형과 유전 알고리즘에 의한 자벌레 운동제어)

  • Kim, In-Soo;Kim, Ki-Bum;Park, Seung-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • This study presents a genetic algorithm (GA) to design a PID controller systematically for an inchworm operated by piezoelectric actuators. The performance index considering overshoot and settling time is adopted to search an optimal PID gain using GA. The piezoelectric actuator shows nonlinear characteristics including hysteresis and residual displacement. The PID feedback system combined with an integrator is used to improve the ability of tracking the complex input signals and suppressing the steady state error. The PID controller tuned by GA can track the various motion contours effectively. However, the PID controller shows an improper residual vibration under the application of high-frequency square input. The input shaper combined with the feedback system can overcome this limitation of the PID controller.

Controller Structure and Performance According to Linearization Methods in the Looper ILQ Control for Hot Strip Finishing Mills (열간사상압연기의 루퍼 ILQ 제어에 있어 선형화 기법에 따른 제어기 구조 및 성능)

  • Park, Cheol-Jae;Hwang, I-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • This paper studies on the relation between linearization methods and controller gains in the looper ILQ(lnverse Linear Quadratic optimal control) system for hot strip finishing mills. Firstly, two linear models arc respectively derived by a linearization method using Taylor's series expansion and a static state feedback linearization method, respectively, and the linear models are compared with the nonlinear model. Secondly, the looper servo controllers are respectively designed on the basis of two linearization models. Finally, the relation between the performances of two ILQ servo controllers and the linearization methods, and the structures and control gains of two controllers are evaluated by a computer simulation.

Design of Robust, Optimal Controller using Sliding Mode (슬라이딩 모드를 이용한 견실 최적 제어기 설계)

  • Byun, Ji-Young;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.580-583
    • /
    • 2003
  • The general time optimal control law provides the optimal solution for a minimum time control problem. But in most real systems with disturbances and model uncertainties, the time optimal control law leads to chattering effect. This chattering effect can cause the system to be unstable. Therefore, we propose a robust optimal control algorithm for the nonlinear second order systems with model uncertainty. The proposed algorithm is combined with bang-bang control and sliding mode control. Thus the proposed algorithm has two state space regions to implement to control algorithm. In each region, the appropriate linear or nonlinear feedback control law is used satisfying the dynamic system equations. Simulation results show the superiority of the proposed controller in comparison with pure time optimal control(bang-bang control).

  • PDF

Model Based Control System Design of Two Wheeled Inverted Pendulum Robot (이륜 도립진자 로봇의 모델 기반 제어 시스템 설계)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.162-172
    • /
    • 2011
  • This paper proposes embedded System of two wheeled inverted pendulum robot designed by model based design method, using MATLAB/SIMULINK and LEGO NXT Mindstorms. At first, stability and performance of controller is verified through modeling and simulation. After that direct conversion from simulation model to C code is carried and effectiveness of controller is experimentally verified. Two wheeled inverted pendulum robot has basic function about autonomous balancing control using principle of inverted pedulum and it is also possible to arrive at destination. In this paper, state feedback controller designed by quadratic optimal control method is used. And quadratic optimal control uses state feedback control gain K to minimize performance index function J. Because it is easy to find gain, this control method can be used in the controller of two wheeled inverted pendulum robot. This proposed robot system is experimentally verified with following performances - balancing control, disturbance rejection, remote control, line following and obstacle avoidance.

Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems (TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.2
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

Robust Stabilization and Guaranteed Cost Control for Discrete-time Singular Systems with Parameter Uncertainties (변수 불확실성을 가지는 이산시간 특이시스템의 강인 안정화 및 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we consider the design problem of robust stabilization and robust guaranteed cost state feedback controller for discrete-time singular systems with parameter uncertainties by LMI(linear matrix inequality) approach without semi-definite condition and decomposition of system matrices. The objective of robust stabilization controller is to construct a state feedback controller such that the closed-loop system is regular, causal, and stable. In the case of robust guaranteed cost control, the optimal value of guaranteed cost and controller design method are presented on the basis of robust stabilization control technique. Finally, a numerical example is provided to show the validity of the design methods.

Design of a CDBC Using Second-order Smoothing Element (2차 평활요소를 이용한 CDBC의 설계)

  • 김진용;김성열;이금원
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • This paper presents a new design method of optimal continuous deadbeat controller by using second-order smoothing elements. The continuous deadbeat controller is made of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. The decision method of the damping factor and the natural angular frequency of the smoothing element is described. A numerical example is given to show how well input-output characteristics are improved. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

Receding horizon tracking control as a predicitive control for the continuous-time systems

  • Noh, Seon-Bong;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1055-1059
    • /
    • 1990
  • This paper proposed a predictive tracking controller for the continuous-time systems by using the receding horizon concept in the optimal tracking control. This controller is the continuous-time version of the previous RHTC (Receding Horizon Tracking Control) for the discrete-time state space models. The problems in implementing the feedforward part of this controller is discussed and a approximate method of implementing this controller is presented. This approximate method utilizes the information of the command signals on the receding horizon and has simple constant feedback and feedforward gain. To perform the offset free control, the integral action is included in the continuous time RHTC. By simulation it is shown that the proposed method gives better performance than the conventional steady state tracking control.

  • PDF