• Title/Summary/Keyword: Optimal regulator

Search Result 238, Processing Time 0.031 seconds

Suboptimsl control for DC servomotor using neural network

  • Kawabata, Hiroaki;Yoshizawa, Masayuki;Konishi, Keiji;Takeda, Yoji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.714-719
    • /
    • 1994
  • This paper proposes a method of suboptimal control for DC servomotor using a neural network. First we consider a nonlinear observer which is constructed by using an approximated linear dynamics of the nonlinear system and a, neural network. The reccurent neural network is used for the learning of the dynamical system. Next we consider the nonlinear observer. Then, we apply the observer output to nonlinear optimal regulator and confirm the effectiveness by applying the method to the inverse pendulum system.

  • PDF

A Design for Reduced-Order Observer Based Optimal Regulator in the Discrete System (이산형 시스템에서의 최소차수의 관측자를 이용한 최적 레귤레이터의 개발)

  • 김한실
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.3
    • /
    • pp.47-56
    • /
    • 1999
  • 제한된 출력 즉 오차 측정된 출력 값만을 사용하여 원하는 목표치에 도달하도록 하는 제어 문제를 푸는데 많은 연구가 진행되어 왔다. 종종 그러한 제어기를 설계할 때 해를 구하기 어려운 Non Linear Two Point Boundary Value Problem에 직면하게 된다. 특히 Reduced order 추정자 알고리즘은 백색 잡음에 의하여 영향을 받은 선형 시스템의 측정된 상태 뿐 만 아니라 보조 상태를 추정하기 위하여 개발되었다. 추정자를 설계할 때 상태는 무편향성이고 추정자의 편차는 추정자 및 추정상태와 공통되는 상태에 대한 모든 출력의 subspace에 수직이 된다. 특히 reduced order에서의 필터 성능은 full order에서의 필터 성능에 대해 suboptimal 이지만 상응한 Riccati equation을 푸는데 계산시간이 줄고 memory사용이 적은 이점이 있다. 본 논문에서는 Kronecker algebra와 선택행렬을 이용하여 Non Linear Two Point Boundary Value Problem을 Linear Two Point Boundary Value Problem으로 변환시켜 부수적으로 수반되는 대수적인 Riccati equation을 유도함으로써 문제를 쉽게 해결하는데 있다.

  • PDF

A Study on the Power System Stabilizer Design using Object-Oriented Method (객체지향기법을 적용한 PSS 설계에 관한 연구)

  • Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.671-677
    • /
    • 1999
  • In this paper, we have designed power system stabilizer (PSS) using object-oriented method. There are several types of power system stabilizer. A proportional-integral(PI) controller is very simple for practical implementation. Therefore it has been widely employed by the industry. The methods of obtaining the gains(Ki,Kp) of PI controller are root-locus method and sub-optimal regulator approach. But these methods are cannot be applicable to nonlinear system and faulted power system. So we proposed a new method which can be applied to nonlinear system by numerical analysis method. The method of dynamic system simulation by numerical method is very difficult and complex. We proposed flexible simultaion method for complex power system analysis using object-oriented programming(OOP) and applied to PI controller design.

  • PDF

Longitudinal Flight Control of a Transport Aircraft Using Thrust Only

  • Ochi, Y.;Kanai, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.3-148
    • /
    • 2001
  • This paper deals with a problem of decreasing the airspeed and the altitude of a transport aircraft using thrust only. Such a situation can occur, if the aircraft loses all hydraulic power that drives the control surfaces. A controller for flight path angle control is designed using the model following servo control method, which is a PI-type optimal regulator. For computer simulation, a simulation model that covers a range of flight envelope is made using given linear models and trim points at some flight conditions. Nondimensional aerodynamic coefficients, derivatives and trim points that are not at the given trim points are computed by linear interpolation. The model is effective in simulation where the trim point varies. Simulation using ...

  • PDF

A Learning Method of LQR Controller Using Jacobian (자코비안을 이용한 LQR 제어기 학습법)

  • Lim, Yoon-Kyu;Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.34-41
    • /
    • 2005
  • Generally, it is not easy to get a suitable controller for multi variable systems. If the modeling equation of the system can be found, it is possible to get LQR control as an optimal solution. This paper suggests an LQR learning method to design LQR controller without the modeling equation. The proposed algorithm uses the same cost function with error and input energy as LQR is used, and the LQR controller is trained to reduce the function. In this training process, the Jacobian matrix that informs the converging direction of the controller Is used. Jacobian means the relationship of output variations for input variations and can be approximately found by the simple experiments. In the simulations of a hydrofoil catamaran with multi variables, it can be confirmed that the training of LQR controller is possible by using the approximate Jacobian matrix instead of the modeling equation and this controller is not worse than the traditional LQR controller.

A study on integrated guidance scheme for guided weapon system (유도무기를 위한 통합된 유도기법에 관한 연구)

  • 김병수;한형석;이장규;박성희;이재명;김삼수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.590-595
    • /
    • 1992
  • An integrated guidance scheme for guided weapon system is described in this paper. Against conventional guidance methods, this method combines an autopilot and a guidance law. The controller is designed using LQ regulator whose performance index is different from other optimal guidance laws. Since dynamics of the system is considered in the derivation, the controller performance is improved. By simulation, the suggested method shows better performance in minimum distance sense than conventional guidance schemes such as Bang Bang guidance or Pursuit Guidance. Since the suggested method provides smooth rudder deflection in contrast to the conventional method, the load on a energy source of the system can be greatly lessened.

  • PDF

Control of servomotor for hospital mobile robots

  • Kimura, Ichiro;Watanabe, Keigo;Jin, Sang-Ho;Kaneko, Satoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1093-1097
    • /
    • 1990
  • A d.c. servomotor with pulse encoder is used to improve the movement of a hospital mobile robot along the desired line. We can achieve an improved movement of the robot by applying a PLL control. It is then shown that we can also reduce 42% of the power dissipation by the use of a PWM control. Furthermore, some simulation studies are presented to illustrate the design of PI control and optimal regulator for the control of the d.c. servomotor.

  • PDF

Optimal Design of Linear Quadratic Regulator Restrict Maximum Responses of Building Structures Subject to Stochastic Excitation (확률적 가진압력을 받는 건축구조물의 최대응답 제한을 위한 선형이차안정기의 최적설계)

  • 박지훈;황재승;민경원;조소훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.373-380
    • /
    • 2001
  • In this research, a controller design method based on optimization is proposed that can satisfy constraints on maximum responses of building structures subject to ground excitation modeled by partially stationary stochastic process. The class of controllers to be optimized is restricted to LQR. Weighting matrix on controlled outputs is used as design variable. Objective function constraint functions and their gradients are computed parameterizing control gain with Riccati matrix. Full state feedback controllers designed by Proposed optimization method satisfy various design objectives and their necessary maximum control forces are computed fur the production of actuator. Probabilities of maximum responses match statistical data from simulation results well.

  • PDF

A Learning Method of LQR Controller using Increasing or Decreasing Information in Input-Output Relationship (입출력의 증감 정보를 이용한 LQR 제어기 학습법)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.84-91
    • /
    • 2006
  • The synthesis of optimal controllers for multivariable systems usually requires an accurate linear model of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. This paper presents a novel loaming method for the synthesis of LQR controllers that doesn't require explicit modeling of the plant dynamics. This method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the LQR objective function. It becomes easier and more convenient because it is relatively very easy to get the sign of Jacobian instead of its Jacobian. Simulations involving an overhead crane and a hydrofoil catamaran show that the proposed LQR-LC algorithm improves controller performance, even when the Jacobian information is estimated from input-output data.

Establishment of Regeneration System and Antibiotic Sensitivity Test for Transformation of Various Vegetable Crops (채소작물의 형질전환을 위한 재분화체계 확립 및 항생제 검정)

  • 박영두;구자정
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.564-569
    • /
    • 1999
  • This study was conducted to determine the concentrations of plant growth regulators required for regeneration and the concentrations of antibiotics for the selection of transformed regenerants from lettuce, musk melon and tomato. The optimal concentrations of plant growth regulators for shoot formation were NAA 0.1 mg/$\ell$ +BA 0.1 mg/$\ell$ for lettuce, NAA 0.01 mg/$\ell$ +BA 2.0 mg/$\ell$ for melon and NAA 0.1 mg/$\ell$ +BA 0.5 mg/$\ell$for musk melon. Shoot induction from tomato, lettuce and melon was completely inhibited by 30 mg/$\ell$ or higher concentrations of kanamycin. Shoot formation from mu나 melon was not affected by kanamycin up to 40 mg/$\ell$, but was reduced in the presence of 50 mg/$\ell$ and completely inhibited by 100 mg/$\ell$. Shoot formation of all four crops was completely inhibited by higromycin at 10 mg/$\ell$. Both carbenicillin and cefatoxinme did not show any negative effects on shoot formation.

  • PDF