• Title/Summary/Keyword: Optimal operation schedule

Search Result 79, Processing Time 0.031 seconds

An Evaluation of Chiller Control Strategy in Ice Storage System for Cost-Saving Operation (운전비 절감을 위한 빙축열시스템 냉동기 운전기법 평가)

  • Lee, Kyoung-Ho;Choi, Byoung-Youn;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • This paper presents simulated and experimental test results of optimal control algorithm for an encapsulated ice thermal storage system with full capacity chiller operation. The algorithm finds an optimal combination of a chiller and/or a storage tank operation for the minimum total operation cost through a cycle of charging and discharging. Dynamic programming is used to find the optimal control schedule. The conventional control strategy of chiller-priority is the baseline case for comparing with the optimal control strategy through simulation and experimental test. Simulation shows that operating cost for the optimal control with chiller on-off operation is not so different from that with chiller part load capacity control. As a result from the experimental test, the optimal control operation according to the simulated operation schedule showed about 14 % of cost saving compared with the chiller-priority control.

Optimal Operation Schedule of Semi-Fixed PV System and Its Effect on PV Power Generation Efficiency (반고정식 PV 시스템의 운영 스케줄 도출 및 그에 따른 발전 효율 변화 고찰)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.69-77
    • /
    • 2017
  • The amount of solar irradiation obtained by a photovoltaic (PV) solar panel is the major factor determining the power generated by a PV system, and the array tilt angle is critical for maximizing panel radiation acquisition. There are three types of PV systems based on the manner of setting the array tilt angle: fixed, semi-fixed, and tracking systems. A fixed system cannot respond to seasonal solar altitude angle changes, and therefore cannot absorb the maximum available solar radiation. The tracking system continually adjusts the tilt angle to absorb the maximum available radiation, but requires additional cost for equipment, installation, operation, and maintenance. The semi-fixed system is only adjusted periodically (usually seasonally) to obtain more energy than a fixed system at an overall cost that is less than a tracking system. To maximize semi-fixed system efficiency, determining the optimal tilt angle adjustment schedule are required. In this research, we conducted a simulation to derive an optimal operation schedule for a semi-fixed system in Seoul, Korea (latitude $37.5^{\circ}$). We implemented a solar radiation acquisition model and PV genereation model on MATLAB. The optimal operation schedule was derived by changing the number of tilt angle adjustments throughout a year using a Dynamic Algorithm. The results show that adjusting the tilt angle 4 times a year was the most appropriate. and then, generation amount of PV system increased 2.80% compared with the fixed system. This corresponds to 99% compared to daily adjustment model. This increase would be quite valid as the PV system installation area increased.

Electric Bill Minimization Model and Economic Assessment of Battery Energy Storage Systems Installed in a Non-residential Customer (비주거용 소비자 전력요금최소화 목적 BESS 최적운영 및 경제성 평가)

  • Park, Yong-Gi;Kwon, Kyoung-Min;Lim, Sung-Soo;Park, Jong-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1347-1354
    • /
    • 2016
  • This paper presents optimal operational scheduling model and economic assessment of Li-ion battery energy storage systems installed in non-residential customers. The operation schedule of a BESS is determined to minimize electric bill, which is composed of demand and energy charges. Dynamic programming is introduced to solve the nonlinear optimization problem. Based on the optimal operation schedule result, the economics of a BESS are evaluated in the investor and the social perspective respectively. Calculated benefits in the investor or customer perspective are the savings of demand charge, energy charge, and related taxes. The social benefits include fuel cost savings of generating units, construction deferral effects of the generation capacity and T&D infra, and incremental CO2 emission cost impacts, etc. Case studies are applied to an large industrial customer that shows similarly repeated load patterns according to days of the week.

Development of optimal algorithm for PV-ESS integrated system by 3 Dimensional Dynamic Programming (3차원 동적계획법에 의한 PV-ESS 연계형 시스템의 최적운용 알고리즘 개발)

  • Choi, You-Rim;Lim, Tae-Hun;Jung, Jea-Hoon;Kim, Yong-Ha
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1027-1032
    • /
    • 2019
  • In this paper, we had developed an algorithm that can cope with all the economic variables that may occur in the operation of PV-ESS system by developing the algorithm for the operation method of PV-ESS connected system. Based on this, the optimal operation schedule of PV-ESS was decided to minimize the electric charges of customers. Through this, we developed a three-dimensional dynamic planning method based on case generation to determine the optimal PV-ESS operation schedule stably even when exogenous variables change.

Rescheduling algorithms considering unit failure on the batch process management (회분공정의 장치 고장을 고려한 동적생산계획 기법)

  • Ko, Dae-Ho;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1028-1031
    • /
    • 1996
  • Dynamic scheduling is very important in constructing CIM and improving productivity of chemical processing systems. Computation at the scheduling level requires mostly a long time to generate an optimal schedule, so it is difficult to immediately respond to actual process events in real-time. To solve these problems, we developed dynamic scheduling algorithms such as DSMM(Dynamic Shift Modification Method), PUOM(Parallel Unit Operation Method) and UVVM(Unit Validity Verification Method). Their main functions are to minimize the effects of unexpected disturbances such as process time variations and unit failure, to predict a makespan of the updated dynamic schedule and to modify schedule desirably in real-time responding to process time variations. As a result, the algorithms generate a new pertinent schedule in real-time which is close to the original schedule but provides an efficient way of responding to the variation of process environment. Examples in a shampoo production batch process illustrate the efficiency of the algorithms.

  • PDF

Near-Optimal Algorithm for Group Scheduling in OBS Networks

  • Nhat, Vo Viet Minh;Quoc, Nguyen Hong;Son, Nguyen Hoang
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.888-897
    • /
    • 2015
  • Group scheduling is an operation whereby control packets arriving in a time slot schedule their bursts simultaneously. Normally, those bursts that are of the same wavelength are scheduled on the same channel. In cases where the support of full wavelength converters is available, such scheduling can be performed on multiple channels for those bursts that are of an arbitrary wavelength. This paper presents a new algorithm for group scheduling on multiple channels. In our approach, to reach a near-optimal schedule, a maximum-weight clique needs to be determined; thus, we propose an additional algorithm for this purpose. Analysis and simulation results indicate that an optimal schedule is almost attainable, while the complexity of computation and that of implementation are reduced.

A Study of Optimal Operation of Sewage Treatment Plants Using NLP (비선형계획법을 이용한 수도권 하수처리장의 최적운영에 관한 연구)

  • 김중훈;윤용남
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.131-138
    • /
    • 1996
  • The objective of this study is to develop an optimal operation model for the sewage treatment plants using nonlinear programming (NLP) technique and the QUAL2E model. The model finds the minimum-cost operation of sewage treatment plants while satisfying all design constraints and water quality (BOD) standard. The model is applied to four sewage treatment plants in Han River for the city of Seoul. It has been found that optimal operation schedule for the sewage treatment plants can be computed and it is more economic to operate the plants according to the schedule which satisfies the water quality constraints in the river. In addition, the water quality in the river can be predicted using the model under the treatment policy.

  • PDF

Coordinated Control of ULTC Considering the Optimal Operation Schedule of Capacitors (커패시터의 최적 스케줄링을 고려한 ULTC의 협조 제어)

  • Park, Jong-Young;Park, Jong-Keun;Nam, Soon-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.242-248
    • /
    • 2006
  • This paper proposes a coordinated control method for under-load tap changers (ULTCs) with shunt capacitors to reduce the operation numbers of both devices. The proposed method consists of two stages. In the first stage, the dispatch schedule is determined using a genetic algorithm with forecasted loads to reduce the power loss and to improve the voltage profile during a day. In the second stage, each capacitor operates according to this dispatch schedule and the ULTCs are controlled in real time with the modified reference voltages considering the dispatch schedule of the capacitors. The performance of the method is evaluated for the modified IEEE 14-bus system. Simulation results show that the proposed method performs better than a conventional control method.

An Optimal Energy Storage Operation Scheduling Algorithm for a Smart Home Considering Life Cost of Energy Storage System

  • Yan, Luo;Baek, Min-Kyu;Park, Jong-Bae;Park, Yong-Gi;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1369-1375
    • /
    • 2017
  • This paper presents an optimal operation scheduling algorithm for a smart home with energy storage system, electric vehicle and distributed generation. The proposed algorithm provides the optimal charge and discharge schedule of the EV and the ESS. In minimizing the electricity costs of the smart home, it considers not only the cost of energy purchase from the grid but also the life cost of batteries. The life costs of batteries are calculated based on the relation between the depth of discharge and life time of battery. As the life time of battery depends on the charge and discharge pattern, optimal charge and discharge schedule should consider the life cost of batteries especially when there is more than one battery with different technical characteristics. The proposed algorithm can also be used for optimal selection of size and type of battery for a smart home.

An Approach for Optimal Dispatch Scheduling Incorporating Transmission Security Constraints (송전계통 안전도 제약조건을 반영한 급전계획 알고리즘 개발에 관한 연구)

  • Chung, Koo-Hyung;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.597-602
    • /
    • 2005
  • The introduction of competition in electricity market emphasizes the importance of sufficient transmission capacities to guarantee various electricity transactions. Therefore, when dispatch scheduling, transmission security constraints should be considered for the economic and stable electric power system operation. In this paper, we propose an optimal dispatch scheduling algorithm incorporating transmission security constraints. For solving these constraints, the dispatch scheduling problem is decomposed into a master problem to calculate a general optimal power flow (OPF) without transmission security constraints and several subproblems to inspect the feasibility of OPF solution under various transmission line contingencies. If a dispatch schedule given by the master problem violates transmission security constraints, then an additional constraint is imposed to the master problem. Through these iteration processes between the master problem and subproblems, an optimal dispatch schedule reflecting the post-contingency rescheduling is derived. Moreover, since interruptible loads can positively participate as generators in the competitive electricity market, we consider these interruptible loads active control variables. Numerical example demonstrates efficiency of the proposed algorithm.