• Title/Summary/Keyword: Optimal operation method

Search Result 1,004, Processing Time 0.027 seconds

Optimal Operation of Dispersed Generation in MicroGrid Systems (마이크로 그리드에서 분산전원의 최적 운영 방안)

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Kim, Soo-Nam;Lee, Sang-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.486_487
    • /
    • 2009
  • This paper presents a method for optimal operation to improve reliability of MicroGrid systems considering load types and interruption cost. The objective functions such as power losses cost, operation cost of dispersed generations, power purchasing cost, and interruption cost are minimized for reliability improvement and efficient operation. The several indices for reliability evaluation are improved by renewable energy sources installation.

  • PDF

Optimal Operation Scheduling Using Possibility Fuzzy Theory on Cogeneration Systems Connected with Auxiliary Equipment (각종 보조설비가 연계된 열병합발전시스템에서 가능성 퍼지이론을 적용한 최적운전계획수립)

  • Kim, Sung-Il;Jung, Chang-Ho;Lee, Jong-Beon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.128-130
    • /
    • 1995
  • This paper presents the optimal operation scheduling on cogeneration systems connected with auxiliary equipment by using the possibility fuzzy theory. The probability fuzzy theory is a method to obtain the possibility of the solution from the fuzzification of coefficients. Simulation is carried out to obtain the boundary of heat production in each time interval. Simulation results shows effectively the flexible operation boundary to establish operation scheduling.

  • PDF

Optimal Coefficient Selection of Exponential Smoothing Model in Short Term Load Forecasting on Weekdays (평일 단기전력수요 예측을 위한 최적의 지수평활화 모델 계수 선정)

  • Song, Kyung-Bin;Kwon, Oh-Sung;Park, Jeong-Do
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.149-154
    • /
    • 2013
  • Short term load forecasting for electric power demand is essential for stable power system operation and efficient power market operation. High accuracy of the short term load forecasting can keep the power system more stable and save the power market operation cost. We propose an optimal coefficient selection method for exponential smoothing model in short term load forecasting on weekdays. In order to find the optimal coefficient of exponential smoothing model, load forecasting errors are minimized for actual electric load demand data of last three years. The proposed method are verified by case studies for last three years from 2009 to 2011. The results of case studies show that the average percentage errors of the proposed load forecasting method are improved comparing with errors of the previous methods.

Study on ESS Operation Plan for Energy Reduction in Industrial Customer (산업용 수용가에서 에너지절감을 위한 ESS 운영 방안에 관한 연구)

  • Yu, Soon-Jeong;Lee, An-gi;Baek, Jeong-Seon;Cha, Dae-Joong;KIm, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1152-1158
    • /
    • 2018
  • In this paper, Optimal operation plan through load analysis of industrial end-user is suggested. It calculated economic feasibility of ESS with detailed power lad analysis and conditions. Generally, if the latest maximum power is less than 30% of contracted power, it can not be peak shaving operation plan. and if the peak load level stays stead for 24 hours, it is difficult peak shaving for ESS. In addition to, When the peak load is occurred in summer or winter, a hybrid operation method combining the peak shaving plan and the time shift method is proposed. Therefore, When ESS is installed in industrial electrical customer, it is achieved best effect through the optimal operation plan.

A Study on Optimal Electric Load distribution of Generators on board using a Dynamic Programming (동적계획법을 이용한 선내 발전시스템의 최적부하분담 방법에 관한 연구)

  • 유희한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.106-112
    • /
    • 2000
  • Since the oil crisis, we have been concerned about the energy saving techniques of electric generating systems. As a part of the effort to save energy, automatic electric load sharing device was developed. Usually, ship's electric generating system consists of two or three sets of generator. And, electric generating system is operated as single or parallel operation mode according to the demanded electric power. Therefore, it is important to investigate generators operating mode for the supply of required electric power in the ship in order to decrease the operating cost. So, this paper suggests the method to solve the optimal electric load distribution problem by dynamic programming. And, this thesis indicates that the proposed method is superior to the lagrange multiplier's method in obtaining optimal load distribution solution in the ship's electric generating system.

  • PDF

Optimal Capacitor Placement in a Distribution System Considering Lifetimes of Devices (기기 수명을 고려한 배전계통 커패시터의 설치 계획)

  • Park, Jong-Young;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.164-171
    • /
    • 2008
  • This paper proposes the planning method for placement of capacitors in a distribution system. The main objectives in the planning for capacitor allocation are the reduction of installation costs and electric power loss. In the proposed method, the life time of each device is considered in calculating installation costs, and the optimal operation status of devices is found by genetic algorithm. Then, the optimal numbers and locations are determined based on the optimal operation status. Simulation results in the 69-bus distribution system show that the proposed method performs better than conventional methods.

A study on the Optimal Operation of Step Voltage Regulator(SVR) in the Distribution Feeders(3) (고압배전선로의 선로전압조정장치(SVR)의 최적운용에 관한 연구(3))

  • Lee, Eun-Mi;Rho, Dae-Seok;Park, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.97-99
    • /
    • 2003
  • This paper deals with optimal voltage regulation methods of line voltage regulator(SVR : Step Voltage Regulator) in power distribution systems. In order to deliver suitable voltages to as many customers as possible, the optimal sending voltage of SVR should be decided by the effective operation of voltage regulators at the distribution feeders and substations. In this paper, a new voltage regulation method based on the existing method is presented and an optimal coordination method of multiple voltage regulators is extended. The results from a case study show that the proposed methods can be a practical tool for the voltage regulation in distribution systems.

  • PDF

A Study on Simplified Robust Optimal Operation of Microgrids Considering the Uncertainty of Renewable Generation and Loads (신재생에너지와 부하의 불확실성을 고려한 마이크로그리드의 단순화된 강인최적운영 기법에 관한 연구)

  • Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.513-521
    • /
    • 2017
  • Robust optimal operation of a microgrid is required since the increase of the penetration level of renewable generators in the microgrid raises uncertainty due to their intermittent power output. In this paper, an application of probabilistic optimization method to economical operation of a microgrid is studied. To simplify the treatment of the uncertainties of renewable generations and load, the new 'band of virtual equivalent load variation' is introduced considering their uncertainties. A simplified robust optimization methodology to generate the scenarios within the band of virtual equivalent load variation and to obtain the optimal solution for the worst scenario is presented based on Monte Carlo method. The microgrid to be studied here is composed of distributed generation system(DGs), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems and wind power systems. The modeling of the objective function for considering interruption cost by the penalty function is presented. Through the case study for a microgrid with uncertainties, the validity of proposed robust optimization methodology is evaluated.

Development of Three Phase Optimal Power Flow for Distributed Generation Systems (분산전원계통을 위한 3상 최적조류계산 프로그램 개발)

  • Song, Hwa-Chang;Cho, Sung-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.882-889
    • /
    • 2010
  • This paper presents a method of finding the optimal operating point minimizing a given objective function with 3 phase power flow equations and operational constraints, called 3 phase optimal power flow (3POPF). 3 phase optimal power flow can provide operation and control strategies for the distribution systems with distributed generation assets, which might be frequently in unbalanced conditions assuming that high penetration rate of renewable energy sources in the systems. As the solution technique for 3POPF, this paper adopts a simulation-based method of particle swarm optimization (PSO). In the PSO based 3POPF, a utility function needs to be defined for evaluation of the degree in operational improvement of each particle's current position. To evaluate the utility function, in this paper, NR-based 3 phase power flow algorithm was developed which can deal with looped distributed generation systems. In this paper, illustrative examples with a 5-bus and a modified IEEE 37-bus test systems are given.

Hierarchical Optimal Control of Non-linear Systems using Fast Walsh Transform (FWT를 이용한 비선형계의 계층별 최적제어)

  • Jeong, Je-Uk;Jo, Yeong-Ho;Im, Guk-Hyeon;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.415-422
    • /
    • 2000
  • This paper presents a new algorithm for hierarchical optimal control of nonlinear systems. The proposed method is simple because the solutions are obtained by only exchanging informations of coefficient vector based on interaction prediction principle and FWT(fast Walsh transform) in upper and lower level. Since we solve two point boundary problem with Picard's iterative method and the backward integral operational matrix of Walsh function to obtain the optimal vector of each independent subsystem, the algorithm is simple and its operation is fast without inverse matrix and kronecker product operation. In simulation, the proposed algorithm's usefulness is proved by comparison with the global optimal control methods.

  • PDF