• Title/Summary/Keyword: Optimal mesh size

Search Result 63, Processing Time 0.033 seconds

Mesh Selectivity of Drift Gill Net for Yellow Croaker, Larimichthys polyactis, in the Coastal Sea of Gageo-do (가거도 인근해역 참조기(Larimichthys polyactis) 유자망의 망목선택성)

  • Kim, Seong-Hun;Park, Seong-Wook;Bae, Jae-Hyun;Kim, Yeong-Hye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.518-522
    • /
    • 2009
  • The mesh selectivity of drift gill net for yellow croaker (Larimichthys polyactis) was examined in field experiments with six different net mesh size (40, 45, 50, 55, 60 and 65 mm) from April to December, 2008 in the northwestern coastal waters of Gageo-do, Korea. The total catch of 8,091 consisted of yellow croaker (n=7,574; 89.5% of total catch), common mackerel (n=162; 4.8%) and other species (n=355; 5.8%). The selectivity curve for the small size yellow croaker was fit by Kitahara's method to the polynomial equation S(R)=exp{($-0.552R^3$+$4.927R^2$-11.591R+9.320)-6.717}. The optimal mesh size for 50% retention for minimum landing size(191mm) of yellow croaker was estimated as 51.1 mm. This is very similar to the current drift net mesh size used in Gageo-do.

Study of the Optimal Mesh Size for a Safety Net for Preventing Falls from Wave-dissipating Blocks (소파블록 낙상사고 방지를 위한 안전망 그물코 크기 산정에 관한 연구)

  • Yoon, Han-Sam;Kim, Min-Su;Jang, Sung-Chul;Lee, Hieung-Sin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.834-840
    • /
    • 2019
  • Recently, due to increased tourism and leisure activities, falls by fishers from coastal wave-dissipating blocks (breakwaters) in Korea have been rising. We investigated the optimal mesh size for use in safety nets designed to cover Tetrapod (TTP) breakwaters to prevent casualties from falls. This is a prerequisite for considering the scale and economics of safety net facilities. The optimal mesh size was determined based on the fisher gender and age, and the bodily features of Koreans. The optimal mesh size was found to be 18.6-27.0 cm, derived based on the femoral length and chest circumference.

Effective Partitioning of Static Global Buses for Small Processor Arrays

  • Matsumae, Susumu
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.85-92
    • /
    • 2011
  • This paper shows an effective partitioning of static global row/column buses for tightly coupled 2D mesh-connected small processor arrays ("mesh", for short). With additional O(n/m (n/m + log m)) time slowdown, it enables the mesh of size $m{\times}m$ with static row/column buses to simulate the mesh of the larger size $n{\times}n$ with reconfigurable row/column buses ($m{\leq}n$). This means that if a problem can be solved in O(T) time by the mesh of size $n{\times}n$ with reconfigurable buses, then the same problem can be solved in O(Tn/m (n/m + log m)) time on the mesh of a smaller size $m{\times}m$ without a reconfigurable function. This time-cost is optimal when the relation $n{\geq}m$ log m holds (e.g., m = $n^{1-\varepsilon}$ for $\varepsilon$ > 0).

Optimal Mesh Size in Three-Dimensional Arbitrary Lagrangian-Eulerian Method of Free-air Explosions (3차원 Arbitrary Lagrangian-Eulerian 기법을 사용한 자유 대기 중 폭발 해석의 최적 격자망 크기 산정)

  • Yena Lee;Tae Hee Lee;Dawon Park;Youngjun Choi;Jung-Wuk Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.355-364
    • /
    • 2023
  • The arbitrary Lagrangian-Eulerian (ALE) method has been extensively researched owing to its capability to accurately predict the propagation of blast shock waves. Although the use of the ALE method for dynamic analysis can produce unreliable results depending on the mesh size of the finite element, few studies have explored the relationship between the mesh size for the air domain and the accuracy of numerical analysis. In this study, we propose a procedure to calculate the optimal mesh size based on the mean squared error between the maximum blast pressure values obtained from numerical simulations and experiments. Furthermore, we analyze the relationship between the weight of explosive material (TNT) and the optimal mesh size of the air domain. The findings from this study can contribute to estimating the optimal mesh size in blast simulations with various explosion weights and promote the development of advanced blast numerical analysis models.

Finite Element Analysis of Fatigue Crack Closure under Plane Strain State (평면변형률 상태 하에서 유한요소해석을 이용한 균열닫힘 거동 예측 및 평가)

  • Lee, Hak-Joo;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.202-207
    • /
    • 2004
  • An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested.

  • PDF

The Estimation of Optimum Harvesting Mesh Size for Multiple Species of Fish (다수어종에 대한 적정어획강목의 추정)

  • Kim, Sam-Kon;Lee, Ju-Hee;Park, Jeong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.2
    • /
    • pp.86-96
    • /
    • 1994
  • In order to estimate the optimum harvesting mesh size of multispecies, the 24 species of catching data which were taken by fishing trial of trawl gear in Korean Southern Coast and East China Sea during 1991-1993 year were grouped and divided by the Cluster analysis method, considering first maturity length and body width, body height, body girth based on the first maturity length. With the same method, the above groups were subdivided by the potential escape such as possible escape index, range factor and selection factor. In case of the species devoid of selection parameters, these species were first subdivided by the use of possible escape index and length range factor. Next, the optimum harvesting mesh size of multispecies was properly classified according to the optimal mesh size of a fish estimated by first maturity length against selection factor. The results obtained are summarized as follows: 1. Each optimum harvesting mesh size of Psenopsis anomala, Priacanthus macra-canthus, Trachurus japonicus, Argyrosomus argentatus was 71.1-79.5mm, and Saurida undosquamis was 65.5mm. 2. Each optimum harvesting mesh size of Scomber japonicus, Pseudosciaena crosea, Pseudosciaena Polyactis, Sebastes thompsoni, Doderleinia berycoides was 78.5-85.6mm, and Bembras japonicus, Sphyraena pinguis was 48.4-51.3mm. 3. Each optimum harvesting mesh size of Zeus faber, Pampus argenteus, Zenopsis nebulosan was 118.4-124.1mm, and Caranx equula was 91.4mm, and Thamnaconus modestus was 131.2mm, and Pagrus major was 149.4mm. 4. Each optimum harvesting mesh size of Upeneus bensasi, Callanthias japonicus, Sardinops melanosticata, Konosirus punctatus was 36.8-42.8mm, and Acropoma japonicum was 21.2mm, and Apogon lineatus was 26.3mm.

  • PDF

A Novel Region Decision Method with Mesh Adaptive Direct Search Applied to Optimal FEA-Based Design of Interior PM Generator

  • Lee, Dongsu;Son, Byung Kwan;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1549-1557
    • /
    • 2018
  • Optimizing the design of large-scale electric machines based on nonlinear finite element analysis (FEA) requires longer computation time than other applications of FEA, mainly due to the huge size of the machines. This paper addresses a new region decision method (RDM) with mesh adaptive direct search (MADS) for the optimal design of wind generators in order to reduce the computation time. The validity of the proposed algorithm is evaluated using Rastrigin and Goldstein-Price benchmark function. Moreover, the algorithm is employed for the optimal design of a 5.6MW interior permanent magnet synchronous generator to minimize the torque ripple. Additionally, mechanical stress analysis as well as electromagnetic field analysis have been implemented to prevent breakdown caused by large centrifugal forces of the modified design.

A study on the mesh selectivity of hairtail (Trichiurus lepturus) caught by coastal drift gill net (연안 유자망에 의한 갈치(Trichiurus lepturus)의 망목 선택성에 관한 연구)

  • KIM, Seonghun;KIM, Pyungkwan;JEONG, Seong-Jae;LEE, Kyounghoon;OH, Wooseok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.285-293
    • /
    • 2019
  • The mesh selectivity of hairtail (Trichiurus lepturus) caught by coastal drift gill net was examined in field experiments with three different mesh sizes (45, 50 and 55 mm) from October to November, 2013 in the coastal areas of south-west of Jeju province. The mesh selectivity tests were conducted with the experimental net to be set middle part of conventional driftnets. The mesh selectivity tests were carried out the total of four times. The selectivity curve was estimated by the Kitahara's and Fujimori's method. In the results, the catch number of hairtail was 653 (125.8 kg) and occupied 34.8% in total catches weight. The optimal mesh size for 50% selection on the minimum landing size (180 mm, AL) and the first maturity size (260 mm, AL) of hairtail were estimated as 47.2 mm and 64.5 mm by master selectivity curves, respectively.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF

Study on the mesh selectivity of a drum shaped pot for finely-striate buccinum (Buccinum striatissimum) in the eastern coastal waters of Korea (우리나라 동해안 북형 통발에 대한 물레고둥(Buccinum striatissimum)의 망목 선택성에 관한 연구)

  • KIM, Seonghun;JEONG, Seong-Jae;PARK, Chang-Doo;KIM, Pyungkwan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.3
    • /
    • pp.193-201
    • /
    • 2020
  • The mesh selectivity of a drum shaped pot for finely-striate buccinum (Buccinum striatissimum) was conducted a total of eight times with four different mesh sizes (22, 35, 50 and 60 mm) from May to September, 2019 in the eastern coastal waters of Korea. The size selectivity analysis was estimated by the SELECT method to express logistic selectivity curves. In the results, the catch of finely-striate buccinum was occupied about 90% in the total catch weight. The equation of the master curve of selectivity was estimated to s(R) = exp(-7.778R+9.983)/[1+exp(-7.778R+9.983)]. The relative shell height of 50% selection was 1.284 and the selection range (SR) was 0.282. The optimal mesh size for 50% selection on the minimum maturation size (75 mm, Shell height) was estimated more than 60 mm by the master selectivity curve.