• Title/Summary/Keyword: Optimal flow-rate

Search Result 755, Processing Time 0.034 seconds

Performance Evaluation of a Closed-Loop Pressure Retarded Membrane Distillation for Brackish Water Desalination and Power Generation (기수담수화와 전력 생산을 위한 폐루프형 압력 지연식 막 증류 공정의 성능 평가)

  • Cho, Gyu Sang;Lee, Jun-Seo;Park, Kiho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.525-534
    • /
    • 2022
  • In this study, we investigated the applicability and optimal operating strategy of a closed-loop pressure retarded membrane distillation (PRMD) for brackish water desalination. For effective operation with net power generation, high temperature of heat source over 90 ℃ and feed flow rate at 0.6 kg/s are recommended. At 3 g/L of feed concentration, the average permeate flux and net energy density showed 8.04 kg/m2/hr and 2.56 W/m2, respectively. The average permeate flux and net energy density were almost constant in the range of feed concentration from 1 to 3 g/L. Compared to the case with seawater feed, the PRMD with brackish water feed showed higher average permeate flux and net energy density. Thus, PRMD application using brackish water feed can be more effective than that using seawater feed in terms of power generation.

Development of Return flow rate Prediction Algorithm with Data Variation based on LSTM (LSTM기반의 자료 변동성을 고려한 하천수 회귀수량 예측 알고리즘 개발연구)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.2
    • /
    • pp.45-56
    • /
    • 2022
  • The countermeasure for the shortage of water during dry season and drought period has not been considered with return flowrate in detail. In this study, the outflow of STP was predicted through a data-based machine learning model, LSTM. As the first step, outflow, inflow, precipitation and water elevation were utilized as input data, and the distribution of variance was additionally considered to improve the accuracy of the prediction. When considering the variability of the outflow data, the residual between the observed value and the distribution was assumed to be in the form of a complex trigonometric function and presented in the form of the optimal distribution of the outflow along with the theoretical probability distribution. It was apparently found that the degree of error was reduced when compared to the case not considering where the variance distribution. Therefore, it is expected that the outflow prediction model constructed in this study can be used as basic data for establishing an efficient river management system as more accurate prediction is possible.

A HPLC-UV method for quantification of ivermectin in solution from veterinary drug products

  • Kim, Young-Wook;Jeong, Wooseog
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.3
    • /
    • pp.243-248
    • /
    • 2022
  • The HPLC conditions for analysis of ivermectin in solutions dosage forms of commercial anthelmintics are different for each product. The purpose of this study was to establish a standardized chromatographic method for the quantification of ivermectin in solution. The separation was achieved on Waters Xbridge C18 column (4.6×150 nm, 5 ㎛) using different kinds of mobile phase composed of water/methanol/acetonitrile (15/34/51, v/v and 19.5/27.5/53, v/v), with UV detection at wavelengths 245 nm and 254 nm. A total of five commercial ivermectin in solution samples were analyzed. In this study, the optimal chromatographic conditions for analysis of ivermectin in solution were mobile phase of water/methanol/acetonitrile (15/34/51, v/v) at a flow rate of 1.0 mL/min and a detection wavelength of 245 nm using a Waters Xbridge C18 column (4.6×250 nm, 5 ㎛) at a column temperature of 25℃. The linearity was observed in the concentration range of 50~150 ㎍/mL, with a correlation coefficient, r2= 0.99999. The limit of detection and the limit of quantification were 0.88 and 2.68 ㎍/mL, respectively. The accuracy (% recovery) was found to be 98.9 to 100.3%. Intra-day and Intermediate precisions with relative standard deviations were less than 1.0%. The content of ivermectin for five market samples ranged 91.2~102.7%. The proposed method was also found to be robust, therefore, the method can be used for the routine analysis of ivermectin in solutions dosage forms.

Study of regularization of long short-term memory(LSTM) for fall detection system of the elderly (장단기 메모리를 이용한 노인 낙상감지시스템의 정규화에 대한 연구)

  • Jeong, Seung Su;Kim, Namg Ho;Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1649-1654
    • /
    • 2021
  • In this paper, we introduce a regularization of long short-term memory (LSTM) based fall detection system using TensorFlow that can detect falls that can occur in the elderly. Fall detection uses data from a 3-axis acceleration sensor attached to the body of an elderly person and learns about a total of 7 behavior patterns, each of which is a pattern that occurs in daily life, and the remaining 3 are patterns for falls. During training, a normalization process is performed to effectively reduce the loss function, and the normalization performs a maximum-minimum normalization for data and a L2 regularization for the loss function. The optimal regularization conditions of LSTM using several falling parameters obtained from the 3-axis accelerometer is explained. When normalization and regularization rate λ for sum vector magnitude (SVM) are 127 and 0.00015, respectively, the best sensitivity, specificity, and accuracy are 98.4, 94.8, and 96.9%, respectively.

AI based complex sensor application study for energy management in WTP (정수장에서의 에너지 관리를 위한 AI 기반 복합센서 적용 연구)

  • Hong, Sung-Taek;An, Sang-Byung;Kim, Kuk-Il;Sung, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.322-323
    • /
    • 2022
  • The most necessary thing for the optimal operation of a water purification plant is to accurately predict the pattern and amount of tap water used by consumers. The required amount of tap water should be delivered to the drain using a pump and stored, and the required flow rate should be supplied in a timely manner using the minimum amount of electrical energy. The short-term demand forecasting required from the point of view of energy optimization operation among water purification plant volume predictions has been made in consideration of seasons, major periods, and regional characteristics using time series analysis, regression analysis, and neural network algorithms. In this paper, we analyzed energy management methods through AI-based complex sensor applicability analysis such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units), which are types of cyclic neural networks.

  • PDF

A Study on the Visiting Areas Classification of Cargo Vehicles Using Dynamic Clustering Method (화물차량의 방문시설 공간설정 방법론 연구)

  • Bum Chul Cho;Eun A Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.141-156
    • /
    • 2023
  • This study aims to improve understanding of freight movement, crucial for logistics facility investment and policy making. It addresses the limitations of traditional freight truck traffic data, aggregated only at city and county levels, by developing a new methodology. This method uses trip chain data for more detailed, facility-level analysis of freight truck movements. It employs DTG (Digital Tachograph) data to identify individual truck visit locations and creates H3 system-based polygons to represent these visits spatially. The study also involves an algorithm to dynamically determine the optimal spatial resolution of these polygons. Tested nationally, the approach resulted in polygons with 81.26% spatial fit and 14.8% error rate, offering insights into freight characteristics and enabling clustering based on traffic chain characteristics of freight trucks and visited facility types.

Development for Fishing Gear and Method of the Non-Float Midwater Pair Trawl Net (II) - Opening Efficiency of the Model Net according to Front Weight and Wing-end Weight - (무부자 쌍끌이 중층망 어구어법의 개발 (II) - 추와 날개끝 추의 무게에 따른 모형어구의 전개성능 -)

  • 유제범;이주희;이춘우;권병국;김정문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.189-196
    • /
    • 2003
  • In this study, the vertical opening of the non-float midwater pair trawl net was maintained by controlling the length of upper warp. This was because the head rope was able to be kept linearly and the working depth was not nearly as changed with the variation of flow speed as former experiments in this series of studies have demonstrated. We confirmed that the opening efficiency of the non-float midwater pair trawl net was able to be developed according to the increase in front weight and wing-end weight. In this study, we described the opening efficiency of the non-float midwater pair trawl net according to the variation of front weight and wing-end weight obtained by model experiment in circulation water channel. We compared the opening efficiency of the proto type with that of the non-float type. The results obtained can be summarized as follows:1. The hydrodynamic resistance was almost increased linearly in proportion to the flow speed and was increased in accordance with the increase in front weight and wing-end weight. The increasing rate of hydrodynamic resistance was displayed as an increasing tendency in accordance with the increase in flow speed. 2. The net height of the non-float type was almost decreased linearly in accordance with the increase in flow speed. As the reduced rate of the net height of the non-float type was smaller than that of the net height of the proto type against increase of flow speed, the net height of the non-float type was bigger than that of the proto type over 4.0 knot. The net width of the non-float type was about 10 m bigger than that of the proto type and the change rate of net width varied by no more than 2 m according to the variation of the front weight and wing-end weight. 3. The mouth area of the non-float type was maximized at 1.75 ton of the front weight and 1.11 ton of the wing-end weight, and was smaller than that of the proto type at 2.0∼3.0 knot, but was bigger than that of the proto type at 4.0∼5.0 knot. 4. The filtering volume was maximized at 3.0 knot in the proto type and at 4.0 knot in the non-float type. The optimal front weight was 1.40 ton.

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF

The study on the metabolism of benzidine in the isolated perfused rat liver (흰쥐의 적출 간 관류법을 이용한 벤지딘 대사에 관한 연구)

  • Bae, Mun Joo;Roh, Jae Hoon;Cho, Young Bong;Kim, Choon Sung;Chun, Mi Ryoung;Kim, Chi Nyon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.28-37
    • /
    • 1996
  • Benzidine, an aromatic amine used primarily in the manufacture of azo dyes, is recognized as a urinary bladder carcinogen in humans. In rats, mice, and hamsters, chronic exposure to benzidine resulted in tumors of the liver. The present study was undertaken to suggest analyzing the metabolites of benzidine with the optimal condition, identify the metabolites of benzidine, and observe time variance of the metabolites in the isolated perfusated rat liver. N-acetylbenzidine was synthesized by acetylation of benzidine with acetic anhydride and separated by thin layer chromatography(TLC) and high performance liquid chromatography(HPLC). To analysis benzidine and the metabolites of benzidine, HPLC operating condition has been optimized by means of preliminary experiment. The mobile phase consisted of acetonitrile(37%) in phosphate buffer, flow rate maintained at 1.0 ml/min. Optimal detective conditions were electrochemicaldetector(ECD) at 0.75 V for benzidine and N-acetylbenzidine and ultravioletdetector(UVD) at 287 nm for N,N'-diacetylbenzidine. The separation system was composed of a guard column and a separation column(Polymer C18, $4.6{\times}250cm$) at a temparature of $40^{\circ}C$. The perfusion system was equilibrated for 30 minutes before addition of benzidine to the perfusate. Samples of the perfusate were collected at time intervals(0, 10, 20, 30, 60, 90, 120 min) during the 2 hour perfusion. Before analyzing samples by HPLC/ECD/UVD, samples had been treated with sep-pak. Samples of perfusate analyzed by HPLC/ECD/UVD and the metabolites of benzidine in the isolated perfused rat liver were N-acetylbenzidine and N,N'-diacetylbenzidine. Benzidine metabolized over 60% during the initial 30 minutes of perfusion, extensively by 1 hour, and was undetectable in the perfusate. N-acetylbenzidine increased by 30 minutes of perfusion, declined. N,N'-diacetylbenzidine increased the 0-90 minutes period, remained constant during the 90-120 minutes period.

  • PDF

Quantitative Analysis of Antioxidants in Korean Pomegranate Husk (Granati pericarpium) Cultivated in Different Site (HPLC에 의한 산지별 한국산 석류과피 중 항산화화합물의 함량분석)

  • Kwak, Hye-Min;Jeong, Hyun-Hee;Song, Bang-Ho;Kim, Jong-Guk;Lee, Jin-Man;Hur, Jong-Moon;Song, Kyung-Sik
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.431-434
    • /
    • 2005
  • The quantitative analytical method for major antioxidants, ellagic acid and punicalagin, in pomegranate husk (Granati pericarpium) were established by HPLC. The optimal HPLC conditions were as follows: Column; Agilent Zorbax Eclipse XDB-C18 ($4.6{\times}150mm,\;5{\mu}m$), mobile phase; 1% formic acid in water (A) and 1% formic acid in MeCN (B) (gradient elution of 5% to 100% B for 50 min), flow rate; 0.8 ml/min., detection; UV 254 nm. The optimal pre-treatment conditions for HPLC analysis were as follows: 5 g of pomegranate husk in 100 ml of 95% EtOH, refluxed for 3 h. Under these analytical conditions, punicalagin and ellagic acid contents in Korean pomegranates husks which were cultivated in five different sites were determined. As results, the ellagic acid and punicalagin (as a mixture of ${\alpha-\;and\;{\beta}-anomer$) contents were the highest in Haepyung pomegranate husk $(15.27{\mu}g/mg)$ and Jangsung pomegranate husk $(16.21{\mu}g/mg)$, respectively.