• Title/Summary/Keyword: Optimal flow-rate

Search Result 755, Processing Time 0.041 seconds

A Study on Performance Improvement of Industrial Oil Pump Using Computational Analysis (전산해석을 이용한 산업용 오일펌프 성능개선에 관한 연구)

  • Kim, Jin-Woo;Lee, Hyun-Jun;Kong, Seok-Hwan;Lee, Seong-Won;Chung, Won-Ji
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1111-1117
    • /
    • 2022
  • Recently, interest in the circular economy has emerged in the industry. As a result, interest in Re-manufacturing, which makes old equipment similar to new products, is growing. In the machine tool industry with many aging equipment, the Re-manufacturing industry is essential, and among them, research on the performance improvement of gear type oil pumps was conducted. The purpose was to achieve the target performance of flow rate and volume efficiency by changing the shape of the gear pump housing clearance and inlet/outlet, and Computational Fluid Analysis and Central Composite Design were conducted using ANSYS CFX 2022 R2 and MINITAB®. The level of each determined factor was determined. 20 design points were derived, and the Flow Rate at each design point was calculated, and the Theoretical Flow Rate was calculated to obtain Volumetric Efficiency. The optimal design point was obtained when the Flow Rate was 140 lpm and the Volumetric Efficiency was maximum, the optimal design point was obtained when both were maximum, and the Surface Plot for each factor was obtained to identify the tendency.

A study on the NOx emission characteristics with combustion air flow conditions in air-staged coal burner (공기다단 석탄버너에서 연소공기 유동조건에 따른 NOx 배출특성에 관한 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Kim, Sang-Hyeun;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.379-384
    • /
    • 2003
  • Coal-burning utilities are facing a major NOx control compliance challenge due to the heavy emission regulation. In response to this challenge, some applicative technologies to effectively reduce NOx are developed and applied in the pulverized coal power plants. One of these is low NOx burner(LNB) equipped with multi-staged air register. In this study, NOx emission rate and flame shapes are investigated with secondary and tertiary air flow conditions in air staged coal burner, and the optimal windows of flow conditions to minimize NOx emission rate are found out. The test conditions treated in this study are the flow rate, swirl direction and intensity and throat injection velocity of secondary and tertiary air.

  • PDF

Analysis of Flow Characteristics of Triple Filter System by the Influence of Filter Density (필터 조밀도의 영향에 의한 3단 필터 시스템의 유동특성 해석)

  • In-Soo Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1163-1169
    • /
    • 2023
  • In this study, the flow characteristics of the filter system were analyzed due to the effect of the density of the filter in the triple filter system. Flow analysis was performed as a flow passing through a porous medium. The flow characteristics of each filter system were analyzed by arranging filters with different densities in the forward flow flow and the reverse flow. The arrangement order of the triple filters was excellent in the case of forward fluid flow and in the case of higher density from the inside to the outside filter. In the reverse flow filter system, the performance of the system was the best in the case of reverse order filter arrangement. As a result of the analysis, Case II, which showed a pressure drop rate of 5.65% for forward flow, was the best in the reverse direction with a pressure drop rate of 14.25%. Considering reverse and forward flows, it was found that the optimal filter arrangement was most effective when the intermediate filter was the densest, and the inner or outer filter was less dense.

평행류 열교환기의 헤더부 형상 최적화

  • 오석진;이관수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1017-1024
    • /
    • 2001
  • The optimum shape of header part in a PFHE (parallel-flow heat exchanger) is studied. The optimal values of each geometric parameter are proposed according to their order of influence with varying the four important parameters (the injection angle of working fluid ($\Theta$), the shape of inlet(S), the location of inlet ($y_c/D_{in}$) and the height of the protruding flat tube ( $y_{b/}$ $D_{in}$ )). The optimal geometric parameters are as follows:$\Theta= -21^{\circ}C,\; S=Type\; A \;an\;y_b/D_{in}$/=0. The heat transfer rate of the optimum model, compared to that of the reference model, is increased by about 55%. The optimal geometric parameters ran be applicable to the Reynolds number ranging from 5,000 to 20,000.0.

  • PDF

The Optimal Composing the Filter-Bed for Coping with Daily Flow-Rate Fluctuation for the Performance of Sand Filtration Process (일유량 변동에 따른 여과수질 악화에 대처하기 위한 최적 여재구성에 관한 연구)

  • Park, Dong-Hak;Park, No-Suk;Kim, Seong-Su;Bae, Cheol-Ho;Jung, Nahm-Chung;Cjoi, Seung-II
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.485-491
    • /
    • 2007
  • The fluctuation of inlet flow to a water treatment plant makes a serious problem that it can change the filtration rate abruptly, and ultimately occur the breakthrough of the detained particles inside filter media. Also, since it takes very short time (about 10 minutes) for the surface wave occurred from the fluctuation of inlet flow to reach the filtration process, it is impossible to control the filtration rate stably. Therefore, this study was conducted to evaluate the effect of daily flow-rate fluctuation on the performance of sand filtration process, and to suggest the dual media composition for coping with that effect. Comparative column tests have been carried out for various dual media (sand and anthracite) compositions. From the results of column tests, dual media, especially in the case of sand 45cm/anthracite 30cm, is more effective to cope with the effect of flow-rate fluctuation on the performance of filtration than single media (only sand). In addition, irrespective of dual media composition, managing ability to cope with that fluctuation tends to be weak at the end of allowable filtration duration time,

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

Sequential Bypass Effects in the Stenosed Coronary Artery (협착이 발생된 관상동맥내 시퀜셜 문합의 효과)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Kwon, Hyuck-Moon;Lee, Byung-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1919-1922
    • /
    • 2003
  • Bypass anastomosis are frequently adopted for surgical treatments. After the bypass grafting, the bypass artery is often occluded due to restenosis and/or anastomotic neointimal fibrous hyperplasia phenomena. Optimal coronary bypass anastomosis should be investigated to improve the patency for the arterial bypass techniques. The objective of this study is to investigate the influence of bypass with sequential bypass effects in the stenosed coronary artery. Numerical analyses are focused on the understanding of the flow patterns for different sequential anastomosis techniques. Blood flow field is treated as two-dimensional incompressible laminar flow. The finite volume method is adopted for discretization of the governing equations. The Carreau model is employed as the constitutive equation for blood. To find the optimal sequential bypass anastomotic configurations, the mass flow rates at the outlet of different models are compared quantitatively.

  • PDF

The optimal parameters in series-series counterflow chillers system within air conditioning (공조장치내의 직렬-직렬 대향류 냉각기에서 최적 변수)

  • Phu, Nguyen Minh;Hung, Bui Ngoc;Lee, Geun-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1332-1336
    • /
    • 2009
  • If water-chillers are arranged in series-series counterflow, compressor lift of each chiller will be decreased in comparison with water-chillers in parallel. That means that compressor power of the chillers in series will be lower than that of chillers in parallel. However, the pressure drop of the water flow through the chillers in series will increase, and thus increase the power of water pumps. This disadvantage will be made good by increasing the temperature difference of water flow through evaporator and condenser, but the water flow rates will decrease. This paper explores the optimal parameters in system of series-series counterflow for central chilled water plants such as the leaving chilled water temperature, the leaving condenser water temperature, condenser water flow rate and number of chillers in series.

  • PDF

On the Formulation and Optimal Solution of the Rate Control Problem in Wireless Mesh Networks

  • Le, Cong Loi;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.295-303
    • /
    • 2007
  • An algorithm is proposed to seek a local optimal solution of the network utility maximization problem in a wireless mesh network, where the architecture being considered is an infrastructure/backbone wireless mesh network. The objective is to achieve proportional fairness amongst the end-to-end flows in wireless mesh networks. In order to establish the communication constraints of the flow rates in the network utility maximization problem, we have presented necessary and sufficient conditions for the achievability of the flow rates. Since wireless mesh networks are generally considered as a type of ad hoc networks, similarly as in wireless multi-hop network, the network utility maximization problem in wireless mesh network is a nonlinear nonconvex programming problem. Besides, the gateway/bridge functionalities in mesh routers enable the integration of wireless mesh networks with various existing wireless networks. Thus, the rate optimization problem in wireless mesh networks is more complex than in wireless multi-hop networks.

Optimization of Spray Drying Process for Manufacturing Dried Vinegar using Response surface methodology (분말식초제조를 위한 분무건조공정의 최적화)

  • 황성희;정용진;윤광섭
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.194-199
    • /
    • 2002
  • This study was conducted to develop processing method for vinegar powder from natural vinegar for encapsulation applications. To optimize the spray drying process, experiment was designed by central composition method to find optimal conditions for manufacturing vinegar powder. The acidity, water absorption, solid content and heat stability of vinegar powder were selected as response variables. The optimal concentration of inclusion complex which was made with vinegar and ${\beta}$-cyclodextrin was determined on 30。bx. On increasing the concentration of ${\beta}$-cyclodextrin as a wall material, the quality of the vinegar was decreased. The optimum conditions of spray drying process for manufacturing vinegar powder were 188∼192$^{\circ}C$ and 500∼600 Lh$\^$ -1/ as inlet temperature and flow rate, respectively.