• Title/Summary/Keyword: Optimal economic life

Search Result 126, Processing Time 0.025 seconds

An Economic Order Quantity Model under Random Life Cycle (불확실한 수명주기의 제품에서의 경제적 주문량 모형)

  • Yun, Won-Young;Moon, Il-Kyeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.1
    • /
    • pp.73-77
    • /
    • 1993
  • This paper considers an Economic Order Quantity Model under random life cycle. It is assumed that the life cycle of the product is unknown; a random variable. Three cost parameters are considered; ordering cost, inventory carrying cost and salvage cost. Expected total cost is the optimization criterion. We show that the optimal cycle length is unique and finite, and present a simple line search method to find an optimal cycle length.

  • PDF

An Estimation of the Economic Life Expectancy of the Building Service Equipment with LCC Analysis (LCC 분석을 통한 공조설비 내구연한 산정)

  • Kang, Sung-Ju;Kim, Yong-Ki;Lee, Tae-Won
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.316-321
    • /
    • 2007
  • It is difficult for a superintendent or an operator of building service systems and equipment to decide the reasonable time for management of himself due to the shortage of his specialty for repair or replacement of a part of or whole equipment. But The reliable life expectancies for various building service equipment have not been prepared yet. This study shows the difference of optimal economic life and the decrease of running cost and energy consumption according to management level of the building equipment by the LCC analysis. The numerical model for building HVAC system was composed and analyses were performed for several parameters with management.

  • PDF

A Study for Determining Optimal Economic Life of the Domestic Financial Information Systems Based on Data (데이터를 기반으로 한 국내 금융권 정보시스템의 최적 경제수명주기 모델에 대한 연구)

  • Park, Sungsik;Hahm, Yukun;Lee, Seojun
    • Informatization Policy
    • /
    • v.19 no.2
    • /
    • pp.85-105
    • /
    • 2012
  • So far, the importance of informatization, as well as investment into it, has been growing steadily. Due to the uncertainties and risks in adopting information technologies, systematic decision-making is definitely needed in investing in a large scale information system. Based on the existing theories about the economic life span of information systems and in consideration of the actual cost involved in the adoption and operation of the systems by the financial institutions in Korea, this study presents the optimal economic life span for all types of information systems in terms of the economic cost and generalizes the optimal life span. The ultimate purpose of this study is to develop a model that could be used in anticipating the timing of economic replacement of the information system of the same type and making decisions on IT investment.

  • PDF

Reliability-based Life Cycle Cost Analysis for Optimal Seismic Upgrading of Bridges

  • Alfredo H-S. Ang;Cho, Hyo-Nam;Lim, Jong-Kwon;An, Joong-San
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • This study is intended to propose a systematic approach for reliability-based assessment of life cycle cost (LCC) effectiveness and economic efficiency for cost-effective seismic upgrading of existing bridges. The LCC function is expressed as the sum of the upgrading cost and all the discounted life cycle damage costs, which is formulated as a function of the Park-Ang damage index and structural damage probability. The damage costs are expressed in terms of direct damage costs such as repair/replacement costs, human losses and property damage costs, and indirect damage costs such as road user costs and indirect regional economic losses. For dealing with a variety of uncertainties associated with earthquake loads and capacities, a simulation-based reliability approach is used. The SMART-DRAIN-2DX, which is a modified version of the well-known DRAIN-2DX, is extended by incor-porating LCC analysis based on the LCC function developed in the study. Economic efficiencies for optimal seismic upgradings of the continuous PC segmental bridges are assessed using the proposed LCC functions and benefit-cost ratio.

  • PDF

Optimum Management Plan of the HVAC Equipments with LCC Analysis (LCC 분석을 통한 공기조화 열원설비의 최적 관리방안)

  • Kim, Yong-Ki;Woo, Nam-Sub;Kang, Sung-Ju;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.556-562
    • /
    • 2008
  • The building HVAC systems have very different qualities of performance and durability with the superintendent's ability for management and maintenance. The poor management of these systems finally lead to the shortening of the life expectancy and result in the increase of operating costs and energy consumptions due to low efficiencies. This study presents an example of appropriate use of the LCC(Life Cycle Cost) analysis in a process of maintaining and repairing old HVAC equipments, by demonstrating the difference of optimal economic life, decrease of running cost, and energy consumption according to the management level of the HVAC equipments. But there are no reliable life expectancy and performance history data at present for optimal management of various building service equipments. Therefore, it is necessary to construct long-term database on operation results of them for more accurate and optimized LCC analysis.

A Study of Determination on Usage Life of Production Facilities for Economic LCC (경제적 LCC 를 위한 생산설비의 사용년수에 관한 연구)

  • Yoo, Il-Geon;Park, Won-Jun
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.37-51
    • /
    • 1993
  • This paper studies the economic replacement method for production facilities which requires huge investment but are necessary for higher productivity and competability of products. That is, the general models for the decision of economic life of properties which minimizes the total costs throughout the usage life(Life cycle costs) are generated. Main factors which make influences for the decision of econmic life can be divided by three. These are the change of salvage value, repair and maintenance costs, and availability of production facilities with the passage of usage time. In this paper, the real world data for these three factors are collected and analyzed for the extraction of representative standard forms with the passage of time. And general models for economic replacement methods and optimal usage terms are presented through tables with the combination of the standard forms of these three main factors.

  • PDF

A Study on the Determination for the Economic Life-Time of a Self-Propelled Artillery (자주포 경제수명 결정에 관한 연구)

  • 최은성;최석철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.26-37
    • /
    • 2000
  • This research paper deals with the problem of determining the optimal life time in terms of economical sense for a self-propelled artillery. Equivalent Annual Cost Method(EACM) is used to evaluate the optimal life time, based on the acquisition cost, and the operation and maintenance cost. It is assumed that the operation and maintenance cost includes the costs for spare parts, petroleum and ammunition for training. From the result of this study, the optimal life time for a self-propelled artillery is between 13.9 years and 16.1 years with 95% confidence interval.

  • PDF

Design of a Life Test Sampling Plan Based on the Cost Model

  • Kwon, Young-Il
    • International Journal of Reliability and Applications
    • /
    • v.6 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • An economic life test sampling plan for products with exponential lifetime distribution is developed. To reduce test time, a test plan with curtailed Type II censoring is considered. A cost model is constructed which involves three cost components; test cost, accept cost, and reject cost. Determination of optimal plan minimizing the expected average cost per lot is discussed with a constraint related to consumer's risk. Some numerical examples are provided.

  • PDF

A study on the economical life of large-diameter water pipe: case study in P waterworks (대구경 상수도관로의 경제적수명 산정 연구: P상수도 사례연구)

  • Kim, Kibum;Seo, Jeewon;Choi, Taeho;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.37-45
    • /
    • 2018
  • This study develops a model to estimate the economic life of the large-diameter water supply pipeline in Korea by supplementing existing methods used to perform similar calculations. To evaluate the developed methodology, the model was applied to the actual target area with the conveyance pipe in P waterworks. The application yielded an economic life computation of 39.7 years, considering the cost of damages, maintenance, and renewal of the pipeline. Based on a sensitivity analysis of the derived results, the most important factor influencing the economic life expectancy was the predicted failure rate. The methodology for estimating the economic life of the water supply pipeline proposed in this study is one of the core processes of basic waterworks facility management planning. Therefore, the methods and results proposed in this study may be applied to asset management planning for water service providers.

An Economic Design of Constant Stress Accelerated Life Tests (일정스트레스 가속수명시험의 경제적 설계)

  • 윤원영;반한석
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.1
    • /
    • pp.145-152
    • /
    • 1994
  • This paper deals with an economic design of acelerated life test under constant stresses where failure times are exponentially distributed. In this case the optimization criterion is the information amount per unit cost. Fisher's information matrix of exponential distribution's parameters and expected cost considering fixed and variable costs are obtained. The decision variable is the censoring time in the model. In the 2-level constant stress case, it is proved that the optimal solution exists and is unique under some condition. Numerical examples are also included.

  • PDF