• Title/Summary/Keyword: Optimal driving

Search Result 521, Processing Time 0.026 seconds

Determination of coagulant input rate in water purification plant using K-means algorithm and GBR algorithm (K-means 알고리즘과 GBR 알고리즘을 이용한 정수장 응집제 투입률 결정 기법)

  • Kim, Jinyoung;Kang, Bokseon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.792-798
    • /
    • 2021
  • In this paper, an algorithm for determining the coagulant input rate in the drug-injection tank during the process of the water purification plant was derived through big data analysis and prediction based on artificial intelligence. In addition, analysis of big data technology and AI algorithm application methods and existing academic and technical data were reviewed to analyze and review application cases in similar fields. Through this, the goal was to develop an algorithm for determining the coagulant input rate and to present the optimal input rate through autonomous driving simulator and pilot operation of the coagulant input process. Through this study, the coagulant injection rate, which is an output variable, is determined based on various input variables, and it is developed to simulate the relationship pattern between the input variable and the output variable and apply the learned pattern to the decision-making pattern of water plant operating workers.

Deep Learning-Based Vehicle Anomaly Detection by Combining Vehicle Sensor Data (차량 센서 데이터 조합을 통한 딥러닝 기반 차량 이상탐지)

  • Kim, Songhee;Kim, Sunhye;Yoon, Byungun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.20-29
    • /
    • 2021
  • In the Industry 4.0 era, artificial intelligence has attracted considerable interest for learning mass data to improve the accuracy of forecasting and classification. On the other hand, the current method of detecting anomalies relies on traditional statistical methods for a limited amount of data, making it difficult to detect accurate anomalies. Therefore, this paper proposes an artificial intelligence-based anomaly detection methodology to improve the prediction accuracy and identify new data patterns. In particular, data were collected and analyzed from the point of view that sensor data collected at vehicle idle could be used to detect abnormalities. To this end, a sensor was designed to determine the appropriate time length of the data entered into the forecast model, compare the results of idling data with the overall driving data utilization, and make optimal predictions through a combination of various sensor data. In addition, the predictive accuracy of artificial intelligence techniques was presented by comparing Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) as the predictive methodologies. According to the analysis, using idle data, using 1.5 times of the data for the idling periods, and using CNN over LSTM showed better prediction results.

Safety Factor Analysis of Range-Shift on Multi-Purpose Agricultural Implement Machinery (다목적 농작업 기계 변속기 부변속 안전율 분석)

  • Moon, Seok Pyo;Baek, Seung Min;Lee, Nam Gyu;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.141-151
    • /
    • 2020
  • The aim of this study was to analyze the safety factor of range-shift gear pairs on multi-purpose agricultural implement machinery for an optimal design of a transmission system. Gear-strengths such as bending and contact stress and safety factors were analyzed under three load conditions: an equivalent engine torque at plow tillage, a rated engine torque, and the maximum engine torque. Root and contact safety factor were calculated to be 3.88, 5.14, 2.24, 2.11, 2.21, 0.99 and 0.78, 0.94, 0.65, 0.68, 0.84, 0.85, respectively, under equivalent engine torque condition at the plow tillage. The root and contact safety factor were calculated to be 1.91, 2.53, 1.10, 1.04, 1.07, 0.48 and 0.55, 0.66, 0.46, 0.48, 0.59, 0.59, respectively, under rated engine torque condition. The root and contact safety factor were calculated to be 1.60, 2.11, 0.92, 0.87, 0.90, 0.40 and 0.51, 0.61, 0.42, 0.44, 0.54, 0.54, respectively, under the maximum engine torque condition. The multi-purpose agricultural implement machinery could be conducted under plow tillage operation. However, gear specifications for tooth surface need modification because the gear surface would be broken at all driving conditions as safety factors are lower than 1.

Development of DC/DC Converters and Actual Vehicle Simulation Experiment for 150 kW Class Fuel-cell Electric Vehicle (150kW급 수소연료전지 차량용 DC/DC 컨버터 개발 및 실차모사 실험)

  • Kim, Sun-Ju;Jeong, Hyeonju;Choi, Sewan;Cho, Jun-Ho;Jeon, Yujong;Park, Jun-Sung;Yoon, Hye-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2022
  • This paper proposes a power system that includes a 120k W fuel cell DC-DC converter (FDC) and 30 kW bidirectional DC-DC converter (BHDC) for a 150 kW fuel-cell vehicle. With a high DC link voltage of 800 V, the efficiency and power density of the power electronic components are improved. Through the modular design of FDC and BHDC, electric components are shared, resulting in reduced mass production costs. The switching frequency of 30 kHz of full SiC devices and optimal design of coupled inductor reduce the volume, achieving a power density of 8.3 kW/L. Furthermore, a synergetic operation strategy using variable limiter control of FDC and BHDC was proposed to efficiently operate the fuel cell vehicle considering the fuel cell stack efficiency according to the load. Finally, the performance of the prototype was verified by Highway Fuel Economy Driving Schedule testing, EMI test, and the linked operation between FDC and BHDC. The full load efficiencies of the FDC and BHDC prototypes are 98.47% and 98.74%, respectively.

Study on an Electrostatic Deflector for Ultra-miniaturized Microcolumn to Realize sub-10 nm Ultra-High Resolution and Wide Field of View (10 nm 이하 초고해상도와 광폭 관측시야를 구현하기 위한 극초소형 마이크로컬럼용 정전형 디플렉터 연구)

  • Lee, Hyung Woo;Lee, Young Bok;Oh, Tae-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.29-37
    • /
    • 2021
  • A 7 nm technology node using extreme ultraviolet lithography with a wavelength of 13.5 nm has been recently developed and applied to the semiconductor manufacturing process. Furthermore, the development of sub-3 nm technology nodes continues to be required. In this study, design factors of an electrostatic deflector for an ultra-miniaturized microcolumn system that can realize an electron wavelength of below 1.23 nm with an acceleration voltage of above 1 eV were investigated using a three-dimensional simulator. Particularly, the optimal design of the electrostatic octupole floating deflector was derived by optimizing the design elements and improving the driving method of the 1 keV low energy ultra-miniaturized microcolumn deflector. As a result, the entire wide field of view greater than 330 ㎛ at a working distance of 4 mm was realized with an ultra-high-resolution electron beam spot smaller than 10 nm. The results of this study are expected to be a basis technology for realizing a wafer-scale multi-array microcolumn system, which is expected to innovatively improve the throughput per unit time, which is the biggest drawback of electron beam lithography.

Multi-Level Inverter Circuit Analysis and Weight Reduction Analysis to Stratospheric Drones (성층권 드론에 적용할 멀티레벨 인버터 회로 분석 및 경량화 분석)

  • Kwang-Bok Hwang;Hee-Mun Park;Hyang-Sig Jun;Jung-Hwan Lee;Jin-Hyun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.953-965
    • /
    • 2023
  • The stratospheric drones are developed to perform missions such as weather observation, communication relay, surveillance, and reconnaissance at 18km to 20km, where climate change is minimal and there is no worry about a collision with aircraft. It uses solar panels for daytime flights and energy stored in batteries for night flights, providing many advantages over existing satellites. The electrical and power systems essential for stratospheric drone flight must ensure reliability, efficiency, and lightness by selecting the optimal circuit topology. Therefore, it is necessary to analyze the circuit topology of various types of multi-level inverters with high redundancy that can ensure the reliability and efficiency of the motor driving power required for stable long-term flight of stratospheric drones. By quantifying the switch element voltage drop and the number and weight of inverter components for each topology, we evaluate efficiency and lightness and propose the most suitable circuit topology for stratospheric drones.

Designing a Reinforcement Learning-Based 3D Object Reconstruction Data Acquisition Simulation (강화학습 기반 3D 객체복원 데이터 획득 시뮬레이션 설계)

  • Young-Hoon Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.11-16
    • /
    • 2023
  • The technology of 3D reconstruction, primarily relying on point cloud data, is essential for digitizing objects or spaces. This paper aims to utilize reinforcement learning to achieve the acquisition of point clouds in a given environment. To accomplish this, a simulation environment is constructed using Unity, and reinforcement learning is implemented using the Unity package known as ML-Agents. The process of point cloud acquisition involves initially setting a goal and calculating a traversable path around the goal. The traversal path is segmented at regular intervals, with rewards assigned at each step. To prevent the agent from deviating from the path, rewards are increased. Additionally, rewards are granted each time the agent fixates on the goal during traversal, facilitating the learning of optimal points for point cloud acquisition at each traversal step. Experimental results demonstrate that despite the variability in traversal paths, the approach enables the acquisition of relatively accurate point clouds.

Design of lift-down kitchen cabinet for elderly and disabled (고령자 및 장애인을 위한 승강형 주방 상부장 설계)

  • Kibum Shim;Hoon Shim;Geon-Hyeok Lim;Jiwon Jang;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.465-470
    • /
    • 2024
  • Kitchen cabinets are widely used for their spacious storage and efficient use of space, but their high installed location makes it difficult for the elderly and disabled to access. Therefore, in this paper, we propose a new height-adjustable kitchen cabinet that can be used more easily and safely. The lift-down range of cabinet was set considering the installation location of cabinet for efficient use of kitchen space and the maximum height accessible to the elderly and disabled, and the link geometry and driving method of the complex link mechanism were determined through the mechanism design procedure to ensure that the selected floor come down safely along the optimal descend path. In addition, the appropriate motor and control algorithm were added to allow the user to descend to the desired height with a simple button operation. It was confirmed through actual production that the proposed linkage mechanism performs the desired lift-down motion.

Suggestion on the Optimal Length of Long Tunnels Considering Traffic Safety Characteristics (교통안전 특성을 고려한 장대터널 적정길이 제시)

  • Kim, Joong-Hyo;Lee, Jeong-Hwan;Kwon, Sung Dae;Ha, Dong Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.203-211
    • /
    • 2014
  • Tunnel reduces travel time as and it is essential facilities for the eco-friendly road construction. In recent years, It has been accelerating the tunnel construction to provide a higher level of traffic service but a driver driving in the narrow and dark tunnel takes characteristically psychological anxiety and the restriction of the sight. Moreover, A driver passing through more than 1,000m long tunnel, as to pass inside the monotonous form of the tunnel for a long time can cause drowsiness and increase the driver load. This driver load can degrade road-holding of the inside of the long tunnel highly and pose a high risk of accidents. Accordingly, In this study is to present the proper length of the Tunnel, considering the characteristics of traffic accident. For this, this study is that the long tunnel that affects traffic safety traffic safety variables are selected and classified. Traffic safety variables are classified in detail as a variable of the traffic accident and velocity one, the applicable variables the number of the traffic accident, the ratio of the traffic accident, driving velocity, the individual vehicle velocity etc. Traffic safety variables are categorized as more than a pole length of the tunnel in order to examine its impact on correlation analysis. The results indicate significant results in traffic accidents in accordance with traffic accidents, traffic safety, selects the variable was Variable depending on the length of the tunnel traffic safety point of significantly increasing the possibility of an accident can be seen as a high point. And the point of the Distribution of selected variables in order to create a traffic safety was a significant increase in traffic safety variables was set at critical intervals. Before reaching the critical point and the corresponding length of the long tunnel was set at the proper length. In this study, the optimum length of the proposed long tunnel through the long tunnel that occur in the future to contribute to reducing traffic accidents would be able to be determined.

Analysis of Trace Copper Metal at The Electrode Consisting of Carbon Nanotube using Stripping Voltammetry (벗김전압전류법을 이용한 카본나노튜브 전극에서의 구리 분석)

  • Choi, Chang-Kun;Jung, Young-Sam;Kim, Nack-Joo;Pak, Dae-Won;Chung, Kun-Yong;Kim, Lae-Hyun;Kwon, Yong-Chai
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.933-937
    • /
    • 2012
  • In the present study, we evaluate the sensitivity and optimal stripping voltammetry (SV) conditions of copper (Cu), which is one of the main trace heavy metals inducing the environmental contamination, using carbon nanotube (CNT) electrode. In addition, the reaction mechanism of stripping reaction of Cu is investigated. The electrochemical analyses such as squarewave stripping voltammetry (SWSV) and linear scan voltammetry (LSV) are used for the evaluations. As a result of that, the best SWSV conditions like squarewave amplitude of 15 mV, frequency of 60 Hz, deposition potential of -1.0V vs. Ag/AgCl and deposition time of 200s are determined with the measured Cu sensitivity of $1.824{\mu}A/{\mu}M$. As a driving force affecting the stripping reaction of Cu, surface reaction is more dominant one than diffusion. These results are compared with other reference results and it is confirmed that our suggested CNT electrode gives rise to better Cu sensitivity result than other references.