• Title/Summary/Keyword: Optimal design structure

Search Result 1,480, Processing Time 0.025 seconds

Development of Doubler Plate Design System for Ship Structure Subjected to In-plane Combined Loads and Lateral Pressure (면내조합하중과 횡압 하의 선박 이중판 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.146-152
    • /
    • 2019
  • A design system was developed for the doubler plate of a ship structure simultaneously subjected to in-plane loads and lateral pressure based on general dimensions and those of a representative ship structure. An equivalent design equation that considers various structural design parameters was derived by introducing the equivalent plate thickness theory, and the design of the doubler plate reinforcement of the ship structure was developed. A hybrid structural design system was established for a doubler plate simultaneously subjected to in-plane loads and lateral pressure consisting of two modules: an optimized design module and a double plate strength & design review module. The practical application of this design system was illustrated to show its usability. It was found that the design safety of the doubler plate was ensured, and this system could be used as an initial design guide to review the double plate reinforcement for a dent or corrosion of the ship plate members. Using the developed design system would make it possible to obtain a more reasonable doubler plate structure that considers the rational reinforcement of plate members of ship structures. In addition, a more reliable structural analysis using a strength evaluation process can be performed to verify the efficiency of the optimum structural design for the doubler plate structure.

Optimal Design of SR Machine for LSEV using CAD and Genetic Algorithm (GA와 상용설계기법을 이용한 저속전기자동차용 SRM의 최적화 설계)

  • Kim Tae-Hyoung;Ahn Jin-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.317-322
    • /
    • 2005
  • Advantages of switched reluctance motor(SRM) include a simple structure, the ability of operation in hash environments and under partial hardware failures, and a wide speed range. However design of SRM for industrial applications is very difficult because motor's inherent none-linearity and sensitivity of design parameter. In this paper, an optimal method for determining design parameters of a switched reluctance motor is researched. The dominant design parameters are stator and rotor pole arc and switching on and off angle. The parameters affecting performance are examined and selected using evolutionary computations and commercial CAD Program. The proposed design process is very fast. reliable and easy to access. The simulated design method proposed is compared with conventional procedure.

A Study of Rapid Prototyping Based on GOMS Model (GOMS 모델을 기반으로 한 Rapid Prototyping에 관한 연구)

  • Cha, Yeon-Joo;Jo, Sung-Sik;Myung, Ro-Hae
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this research was to develop an integrated interface for the usability test of systems or products in the design process. It is capable of automatically creating GOMS models which can predict human task performances. It can generate GOMS models to be interacted with the prototype interfaces. It can also effectively manage various design information and various usability test results to be implemented into the new product and/or system design. Thus we can perform usability test for products or system prototypes more effectively and also reduce time and effort required for this test. For usability tests, we established an integrated interface based on GOMS model by the LabVIEW program. We constructed the system that the linkage to GOMS model is available. Using this integrated interface, the menu structure of mobile phone can be constructed easily. User can design a depth and a breath that he want. The size of button and the label of the button is changable. The path to the goal can be defined by the user. Using a designed menu structure, the experiment could be performed. The results of GOMS model and the actual time are presented. Besides, values of operators of GOMS model can be defined as the value that user wants. Using the integrated interface that we developed, the optimal menu structure deducted. The menu structure that user wants can be established easily. The optimal layout and button size can be decided by comparison of numerous menu structures. User can choose the method of usability test among GOMS model and empirical data. Using this integrated interface, the time and costs can be saved and the optimal menu structure can be found easily.

A Study on the Design of Optimal Variable Structure Controller using Multilayer Neural Inverse Identifier (신경 회로망을 이용한 최적 가변구조 제어기의 설계에 관한 연구)

  • 이민호;최병재;이수영;박철훈;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1670-1679
    • /
    • 1995
  • In this paper, an optimal variable structure controller with a multilayer neural inverse identifier is proposed. A multilayer neural network with error back propagation learning algorithm is used for construction the neural inverse identifier which is an observer of the external disturbances and the parameter variations of the system. The variable structure controller with the multilayer neural inverse identifier not only needs a small part of a priori knowledge of the bounds of external disturbances and parameter variations but also alleviates the chattering magnitude of the control input. Also, an optimal sliding line is designed by the optimal linear regulator technique and an integrator is introduced for solving the reaching phase problem. Computer simulation results show that the proposed approach gives the effective control results by reducing the chattering magnitude of control input.

  • PDF

A Study on the Properties of Self-Compacting Concrete Using Ground Calcium Carbonate (중탄산칼슘을 이용한 자기충전형 콘크리트의 특성에 관한 연구)

  • 최연왕;정문영;임흥빈;황윤태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.73-78
    • /
    • 2002
  • This study examines self-compacting of concrete using Ground Calcium Carbonate(GCC) gathering in limestone mine of Banyans district in order to make self-compacting concrete in the range of design strength 300kgf/cm$^2$ and the optimal mix proportion of self-compacting concrete that can use in field structure. The result shows that the optimal GCC replacement ratio is 45$\pm$5% in the normal strength of design strength 300kgf/cm$^2$ and that the volume ratio of the optimal fine aggregate used as the way satisfying both viscosity and compacting ability without separating materials is 46%. The optimal volume ratio of the coarse aggregate considering the economical aspect of concrete is 50%. It is desirable that the optimal mix proportion satisfying self-compacting for replacement of GCC is decided through mix design according to each replacement ratio.

  • PDF

Multiobjective Optimal Double-Layer PM Rotor Structure Design of IPMSM by Response Surface Method and Finite Element Method (반응표면법을 이용한 매입형 영구자석 동기전동기의 이층 영구자석 회전자 구조 다목적 최적 설계)

  • Choi, Gil-Sun;Hahn, Sung-Chin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.123-130
    • /
    • 2010
  • In general, a design method based on the equivalent magnetic circuit has been used for basic design of Interior Permanent Magnet Synchronous Motor(IPMSM). However, the equivalent magnetic circuit method has difficulty in considering the arrangement of PM. IPMSM has high degree of freedom for PM rotor design. In this paper, we proposed the multiobjective optimal design method considering the arrangement of PM for the double-layer PM rotor structure that minimizes the torque ripple as well as maximizes the torque of IPMSM. The design variables of double-layer PM rotor structure are obtained from the Response Surface Method. Torque and torque ripple were calculated by Finite Element Method.

Optimal Design of Functionally Graded Plates (경사기능재료 판의 최적설계)

  • Na, Kyung-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1061-1064
    • /
    • 2006
  • Optimal design of functionally graded plates is investigated considering stress and critical temperature. Material properties are assumed to be temperature dependent and varied continuously in the thickness direction. The effective material properties are obtained by applying linear rule of mixtures. The 3-D finite element model is adopted using an 18-node solid element to analyze more accurately the variation of material properties and temperature field in the thickness direction. For stress analysis, the tensile stress ratio and compressive stress ratio of the structure under mechanical load are investigated. In the thermo-mechanical buckling analysis, temperature at each node is obtained by solving the steady-state heat transfer problem and Newton-Raphson method is used for material nonlinear analysis. Finally, the optimal design of FGM plates is studied for stress reduction and improving thermo-mechanical buckling behavior, simultaneously.

  • PDF

Parametric study of the energy absorption capacity of 3D-printed continuous glass fiber reinforced polymer cruciform honeycomb structure

  • Hussain Gharehbaghia;Amin Farrokhabadi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • In this paper, the energy absorption capability of a novel cruciform composite lattice structure was evaluated through the simulation of compression tests. For this purpose, several test samples of Polylactic acid cellular reinforced with continuous glass fibers were prepared for compression testing using the additive manufacturing method of material extrusion. Using a conventional path design for material extrusion, multiple debonding is probable to be occurred at the joint regions of adjacent cells. Therefore, an innovative printing path design was proposed for the cruciform lattice structure. Afterwards, quasistatic compression tests were performed to evaluate the energy absorption behaviour of this structure. A finite element model based on local material property degradation was then developed to verify the experimental test and extend the virtual test method. Accordingly, different combinations of unit cells' dimensions using the design of the experiment were numerically proposed to obtain the optimal configuration in terms of the total absorbed energy. Having brilliant energy absorption properties, the studied cruciform lattice with its optimized unit cell dimensions can be used as an energy absorber in crashworthiness applications. Finally, a cellular structure will be suitable with optimal behavior in crush load efficiency and high energy absorption.

Optimal sustainable design of steel-concrete composite footbridges considering different pedestrian comfort levels

  • Fernando L. Tres Junior;Guilherme F. Medeiros;Moacir Kripka
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.647-659
    • /
    • 2024
  • Given the increased interest in enhancing structural sustainability, the current study sought to apply multiobjective optimization to a footbridge with a steel-concrete composite I-girder structure. It was considered as objectives minimizing the cost for building the structure, the environmental impact assessed by CO2 emissions, and the vertical accelerations created by human-induced vibrations, with the goal of ensuring pedestrian comfort. Spans ranging from 15 to 25 meters were investigated. The resistance of the slab's concrete, the thickness of the slab, the dimensions of the welded steel I-profile, and the composite beam interaction degree were all evaluated as design variables. The optimization problem was handled using the Multiobjective Harmony Search (MOHS) metaheuristic algorithm. The optimization results were used to generate a Pareto front for each span, allowing us to assess the correlations between different objectives. By evaluating the values of design variables in relation to different levels of pedestrian comfort, it was identified optimal values that can be employed as a starting point in predimensioning of the type of structure analyzed. Based on the findings analysis, it is possible to highlight the relationship between the structure's cost and CO2 emission objectives, indicating that cost-effective solutions are also environmentally efficient. Pedestrian comfort improvement is especially feasible in smaller spans and from a medium to a maximum level of comfort, but it becomes expensive for larger spans or for increasing comfort from minimum to medium level.

Optimal Structural Design for the Electro-magnectic Launcher (전자력 발사기의 최적 구조 설계)

  • 이영신;안충호
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.143-151
    • /
    • 1996
  • The optimal design for Electro-magnetic Launcher (EML : Rail Gun) considering structural and electrical constraints are presented. For the structure of EML under high pulsed currency, the cross section is minimized subject to maximum stress of each element(rail, side wall, ceramic, and steel) within allowable stress and preload limits. The electrical constraint is the effective ceramic thickness which prevents the eddy current effect reducing the performance of EML. The stress analysis and optimization procedure of 90mm EML is conducted with ANSYS Code. The optimal design under preload is reduced to 53% of area compared with optimal design without preload. In case of rail with arc angle .theta.=45.deg., the performance of EML is the best among the other rail arc angles. The optimal design for rail with arc angle .theta.=45.deg., results in the reduction of 9% of area and 10.4% of deformation compared with Fahrenthold's design. The optimal preload 59.8MPa is much lower than Fahrenthold's design(186MPa). The results show that the optimal design of EML meets the design requirements.

  • PDF