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ABSTRACT

Optimal design of functionally graded plates is investigated considering stress and critical temperature.
Material properties are assumed to be temperature dependent and varied continuously in the thickness direction.
The effective material properties are obtained by applying linear rule of mixtures. The 3-D finite element model is
adopted using an 18-node solid element to analyze more accurately the variation of material properties and
temperature field in the thickness direction. For stress analysis, the tensile stress ratio and compressive stress ratio
of the structure under mechanical load are investigated. In the thermo-mechanical buckling analysis, temperature at
each node is obtained by solving the steady-state heat transfer problem and Newton-Raphson method is used for
material nonlinear analysis. Finally, the optimal design of FGM plates is studied for stress reduction and improving

thermo-mechanical buckling behavior, simultaneously.

1. Introduction

Functionally graded materials (FGMs) are spatial
composites in which material properties vary
continuously from one surface to the other. Typically
FGMs are made from a ceramic and metal. By mixing
these materials, a FGM can withstand high-temperature
environments while maintain their structural integrity.
Due to these advantages, FGMs have been introduced
and applied to many engineering parts (1).

Na and Kim (2) analyzed nonlinear bending of
functionally graded plates subjected to uniform pressure
and thermal loads using 3-D finite element method. A
three-dimensional solid element was used. The Green-
Lagrange nonlinear strain-displacement relation and the
incremental formulation were adopted for nonlinear
analysis. The thermal loads were assumed as uniform,
linear and sinusoidal temperature rises across the
thickness direction. Na and Kim (3) also investigated the
three-dimensional thermo-mechanical buckling of fully
FGM plates or FGM composite plates by using finite
element method. In these, 18-node solid elements and the
assumed strain mixed formulation were applied. The
thermal buckling behavior under time-dependent or time-
independent temperature rise was analyzed. Oota et al.
(4) applied a genetic algorithm to an optimization
problem of minimizing the thermal stress distribution for
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a plate of step-formed FGMs. The step-formed FGM
plate was analyzed as a laminated composite plate made
of numerous layers with homogeneous and different
isotropic material properties.

In this work, stress analysis under mechanical load,
thermo-mechanical buckling behavior and optimal
design of FGM plates are investigated. Material
properties are assumed to be temperature dependent and
varied continuously in the thickness direction. The
effective material properties are obtained by applying
linear rule of mixtures. 3-D finite element method is
adopted and 18-node solid element is selected for more
accurate modeling of material properties and temperature
field in the thickness direction. For stress analysis, the
tensile and compressive stress ratios of the structure
under sinusoidal load are investigated for various volume
fraction distributions. For thermo-mechanical buckling
analysis, the critical temperature gradient with variation
of volume fraction distribution is studied. Finally, the
optimal design of FGM plates is investigated for stress
reduction and improving thermo-mechanical buckling
behavior, simultaneously.

2. Modeling and Formulation

A FGM composite plate, composed of ceramic, FGM,
and metal layers, of length a, width b, and thickness 4 is
considered. Material properties are assumed to be varied
in the thickness direction only and temperature
dependent. The volume fraction of metal V,, is given as
follows by applying a simple power law distribution.
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Vu@=1=GR)Y, Ve (2)=1-Vo(2) ()
where volume fraction index » indicates the material
variation profile through the thickness direction and is a
non-negative real number. All temperature dependent
material properties P of the common ceramics and
metals are expressed as

P(T)=Py(P./T+1+P\T+P,T*+P5T%) @
in which T indicates temperature and Py, P, P, P; and
P; are constants in the cubic fit of the material property.
According to the linear rule of mixtures, the effective
material properties P.; temperature and position
dependent, can be obtained as following

Pef(T2y=Pul T)V,(2)+PATIV 2) 3)
where P,, and P, represent the material properties of the
metal and ceramic, respectively.

A three-dimensional finite element model for thin and
thick FGM composite plates is developed and an 18-
node solid element is used to analyze more accurately the
variation of material properties and temperature field in
the thickness direction of the structure. Temperature at
each node is obtained by solving the steady-state thermo-
mechanical equations. For material nonlinear analysis,
Newton-Raphson method is used.

The general steady-state heat conduction equation can
be expressed as

V-(kVT)=0 @)
where k indicates the thermal conductivity and is a
temperature and position dependent property, functions
of T and z. By applying the Green's theorem and finite

element discretization, the following equation is obtained.

DK (T)T =Y R, )

where
Kr(T)= [N BN, +N kN, +N kN )aV, (6)

Additionally, Ry, denotes the external thermo-
mechanical load. After assembling over all elements, Eq.
(6) becomes
K(T)T=R @)

This nonlinear equation can be solved for T using
Newton-Raphson method.

Considering a three-dimensional
equilibrium as,

solid body in

j SE'SdV —SW =0 (8)

where OE, S, dW and V indicate the virtual strain
vector expressed in terms of the displacement vector u,
the 2™ Piola-Kirchhoff stress vector, the external virtual
work and the volume of the undeformed configuration,
respectively. The stress vector S is related to the strain
vector E through the following equations.

S=C(E-E™) )
where C and E™ is the 6x6 elastic matrix of material
stiffnesses and the initial strain vector in thermal

environment, respectively. The strain vector E and the
virtual strain vector SE can be written as

E=Bq, JE=BJq, (10)
where B is a matrix of derivatives of the shape functions.
The external virtual work W is related to the element
nodal load vector Q, as following.

SW=05qQ, an

By substituting Egs. (9-11) into Eq. (8) and by
assembling over all elements, the following equation can
be obtained.

Kq-Q=0 (12)
where K, q and Q denote the global stiffness matrix, the
global nodal displacement vector, and the global nodal
load vector, respectively. Eq. (12) can be solved for q.
The stress vector can be obtained by substituting q into
Egs. (9) and (10).

In order to analyze the thermal buckling behavior, the
following eigenvalue problem is considered.

[K+K"]q" =0 (13)
where 1, K" and q" are the eigenvalue, stress stiffness
matrix and the associated mode shape, respectively. The

critical temperature 7, corresponds to the lowest
eigenvalue of A, is given by

T,=T, +AT =T +AAT (14)
Since the matrices K and K® in Eq. (13) are temperature

dependent, an iterative scheme 1is implemented to
achieve convergence for critical temperature change

AT, (JA-1<10™).

3. Numerical Resulits

In numerical study, the following dimensionless values
are applied.
x=xla, y=ylb, z=z/h, w=-w/h
. =(c_/E, Xalh) (15)

In the stress analysis, the sinusoidal load ¢ distributed
over the top surface of the plate is given by the
expression

q=-g E (h/a)' sinxXsin 7y (16)
The tensile strength o, and the compressive strength

o, of FGM plates at each point can be calculated

according to the linear rule of mixtures. So as to evaluate
the mechanical strength, the stress ratio o* s

introduced by using the tensile stress ratio &, and the

compressive stress ratio & _, as following.
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o =0_lo, o, 20
oc*=4_ ' (17)
O-c = o—.u /O—l]c O—x\' S 0

In this equation, to avoid failure, the condition |0' *| <1

should be fulfilled and when |0' *| becomes small, the

structure gets better mechanical strength.
In thermo-mechanical analysis, on the top surface of

the plate, a heating temperature AT =7 is applied,

while on the bottom surface and the edges of the plate, a
room temperature 7., of 300K is kept. For non-
dimensionalization of critical temperature, the
dimensionless parameter 7* is introduced in the
following form.

FzTcr/TMm (18)
where T4, indicates the melting point of metal.

To check the validity of present result, firstly the
maximum displacement and stress of a fuily clamped
isotropic square plate under hydrostatic pressure are
analyzed. The hydrostatic pressure g applied on the top
surface is

g, =—-q E(h/a)'x (19)
The numerical results are compared with analytical
solution (5). Table 1 presents the maximum displacement
(w),,. and the maximum stress (&) . This shows

good agreement between the present work and the
previous results.

Table 1. Dimensionless maximum displacement and
stress of a fully clamped isotropic square plate under
hydrostatic pressure (v=0.3, g =5)

temperature changes are presented in Table 2. It shows
that the present results agree well with those of previous
works.

Table 2. Critical temperature change of a fully
clamped isotropic square plate under temperature rises

(a/h=100,v=0.3, a =2x10)

Temperature Source
distribution FEM (6) Present
Uniform 167.70 167.65
Linearly varying 332.50 328.92

Dimensionless Source
quantities Analytical (5) Present
(W), (x107) 3.4398 3.4361
(T ) e 1.0020 0.9418

Secondly, the thermal buckling problem of a fully
clamped isotropic square plate under uniform or linear
temperature rise in x-direction is studied to verify the
present code. The numerical results are compared with
those of FEM results (6). The temperature rise under
uniform temperature rise is expressed as

AT =T (20)

where T denotes the temperature change. In addition,
the temperature rise under linear temperature rise in x-
direction is expressed as

AT(®)=T,% @1

where 7, is the temperature gradient. The critical

The optimal design of clamped square ZrO,/Ti-6Al-
4V FGM plates considering stress and critical
temperature is investigated. The objective is to obtain the
optimal value of volume fraction index n. In this case,
the optimization problem is expressed as follows.

Find n

Minimize f(n)=|o¥_ - T*

Subjectto 0<|o* <1, 0<T*,-n<0 (22
By solving Eq. (22), the optimal values of volume
fraction index when @, is 1.85 and 2.0 are obtained
with an accuracy of 0.01 and those are

n=0.12 when w_=1.85, n=2.63 whenw_=2.0 (23)
When the weighting factor is increased, the weighting of
thermo-mechanical buckling temperature increases, thus,
the optimal volume fraction index becomes larger.

Tables 3-4 illustrate the optimal values of ZrO,/Ti-

6Al-4V FGM plates comparing to the results of ceramic

and metal. It is observed that the objective function f of
FGM has the smallest value, while that of ceramic has

the largest value. In Table 3, lo- *lm and T* of FGM are
between those of ceramic and metal. However, in Table 4,
|0' *|mnx and T* of FGM have the largest values. From

the results, by the optimization procedure the FGM can
get better stress reduction and thermo-mechanical
buckling behavior than both pure ceramic and metal.

Table 3. Optimal values of ZrO,/Ti-6Al-4V FGM
plates (a/h=50, q =5, o, =1.85,n=0.12)

¥ (x107) T (x107)  f(x107)

Ceramic 246.4770 360.6412 -420.7093
Metal 35.92579 294.2868 -508.5047
FGM 53.76075 305.1973 -510.8543

Through-the-thickness distributions of the stress ratio
o * in cases of #=0.12 and 2.63 are shown in Fig.1. The
stress distribution when » is 0.12 shows more smooth
response than that when » is 2.63. The tensile stress ratio
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of #=0.12 is smaller than that of »=2.63, but the
compressive stress ratio of #=0.12 is larger than that of
n=2.63.

Table 4. Optimal values of (a)-type ZrO,/Ti-6Al-4V
FGM plates (a/h=50, q =5, @, =2.0, n=2.63)

lo* (x10%)  T*(x10%)  f(x107)
Ceramic 246.4770 360.6412  -474.8055
Metal 35.92579 2942868  -552.6477
FGM 252.2609 405.8518  -559.4426
n=0.12
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(a) (®)
Fig. 1. Through-the-thickness distribution of the
stress ratio o * for ZrOy/Ti-6A1-4V FGM plates
(a/h=50, q =5)

Figs. 2-3 depict the stress ratio ¢ * distributions on
the top and bottom surfaces of the plates. The difference
of tensile and compressive stress ratios in Fig. 2(a) is
smaller than that in Figure 3(a). On the contrary, the
difference in Fig. 2(b) is larger than that in Figure 3(b).
However, the difference on the bottom surface is much
smaller than that on the top surface.

(b)
Fig. 2. Stress ratio ¢ * distribution of a ZrO,/Ti-
6Al-4V FGM plate: (a) top surface; (b) bottom surface
(a/h=50, q =5, n=0.12)

As a result, the smaller stress ratio than ceramic and
the better thermo-mechanical buckling behavior than
metal can be achieved by using FGM plates. In addition,
it is shown that the FGM plate can have even better

thermo-mechanical buckling behavior than pure ceramic.

(b)
Fig. 3. Stress ratio ¢ * distribution of a ZrO,/Ti-
6Al-4V FGM plate: (a) top surface; (b) bottom surface
(alh=50, q =5, n=2.63)

4. Conclusions

The optimal design of FGM plates is investigated
using 3-D finite element method. Material properties are
assumed to be temperature dependent and they are varied
continuously in the thickness direction. To obtain the
volume fraction, simple power law distribution is applied
The effective material properties, temperature and
position dependent, is obtained using linear rule of
mixtures. From the results, by using FGM plate, the
smaller stress ratio than ceramic and the higher critical
temperature than metal can be obtained.
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