• Title/Summary/Keyword: Optimal design condition

Search Result 994, Processing Time 0.023 seconds

Optimal Condition Determination of Glass Sealing Parameters using the Design of Experiment (실험계획법을 이용한 유리접합의 최적 공정 조건 결정)

  • Lee, Jong-Gon;Jeon, Euy-Sik
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.78-78
    • /
    • 2009
  • Glass sealing method is used glass bond as called frit in LCD, PDP process. but new sealing method is need to consider the endurance and economy. This paper present the new glass sealing method using high density gas torch in the furnace and process variable are defined by experiment. Taguchi Robust Experimental Design methods were applied for optimizing these four main processing parameters.

  • PDF

Optimal Grinding Condition of Tungsten Carbide(WC) for Aspheric Glass Lens Using DOE (DOE를 적용한 비구면 Glass 렌즈 성형용 초경합금(WC) 코어 연삭가공 최적화)

  • Kim, Hyun-Uk;Jeong, Sang-Hwa;Ahn, Jun-Hyung;Cha, Du-Hwan;Lee, Dong-Gil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.41-45
    • /
    • 2006
  • In recent years, the demands of the aspheric glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. Glass lens is manufactured by the forming with high precision mold core. This paper presents the analysis of optimal grinding condition of tungsten carbide(WC, Co 0.5%) using design of experiments(DOE). The process parameters are turbin spindle, work spindle, feedrate and depth of cut. The experiments results are evaluated by MINITAB software.

  • PDF

Determination of Optimal Cutting Conditions in Milling Process using Multiple Design of Experiments Technique (밀링 가공 공정에서 복합실험계획법을 이용한 최적 절삭조건 결정)

  • Kim, Yong-Sun;Kwon, Won-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.232-238
    • /
    • 2011
  • In the present study, Taguchi method is used to determine the rough region first, followed by RSM technique to determine the exact optimum value during milling on a machining center. A region reducing algorithm is applied to narrow down the region of the Taguchi method for RSM. The result from the Taguchi method is fed to train the artificial neural network (ANN), whose optimum value is used to drive the region reducing algorithm. The proposed algorithm is tested under different cutting condition and results show that the introduced algorithm works well during milling process. It is also shown that theoretically obtained optimal cutting condition is very close to experimentally obtained result.

The Study of Shot Peening Process Optimization for Reliability Improvement of an Aircraft Structural Part (항공용 구조물의 신뢰성 향상을 위한 숏피닝 공정 최적화 연구)

  • Nam, Yong-Seog;Jeong, Yoo-In;Kim, Hwa-Soo
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2017
  • Purpose: There is active research that improves both reliability and fatigue life of structures which widely used in the aerospace fields of defense industry. The effects of three parameters (pressure, peening time, nozzle distance) on Almen intensity and coverage will be investigated by using the experimental and analyzed data. Methods: we employed a Box-Behnken design. Additionally, to verify the validity of the optimal condition obtained from experimental results, metallurgical analyses of the shot-peened aerospace part were conducted with respect to surface morphology, residual stress. Results: Optimal shot peening condition is determined as (distance, pressure, time) by optimizing simultaneously the two responses of intensity and coverage. At the optimal peening condition the prediction interval for Almen intensity is well within the required range. And, the validity of the condition was checked by using the real aerospace aluminum alloy plate. Conclusion: Shot peening introduces significant levels of compressive residual stress and induces improves both reliability and fatigue life of structures.

Wave energy converter by using relative heave motion between buoy and inner dynamic system

  • Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2012
  • Power-take-off through inner dynamic system inside a floating buoy is suggested. The power take-off system is characterized by mass, stiffness, and damping and generates power through the relative heave motion between the buoy and inner mass (magnet or amateur). A systematic hydrodynamic theory is developed for the suggested WEC and the developed theory is illustrated by a case study. A vertical truncated cylinder is selected as a buoy and the optimal condition of the inner dynamic system for maximum PTO (power take off) through double resonance for the given wave condition is systematically investigated. Through the case study, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC theory. However, the band-width of high performance region is not necessarily the greatest at the optimal (maximum-power-take-off) condition, so it has to be taken into consideration in the actual design of the WEC.

Optimal Stator Slot Design of Inverter-Fed Induction Motor for Reduction of Core and Winding Losses (손실 저감을 위한 인버터 구동 유도 전동기의 고정자 슬롯 형상 최적화)

  • Kim, Jae-Woo;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.86-88
    • /
    • 2004
  • In this paper, optimal stator slot shape of 3-phase inverter-fed induction motor is designed to reduce stator core and winding losses. For the analysis, the F.E.M on 1 phase band periodic condition in stator is coupled with harmonic equivalent circuit. For the optimal design, the conjugate gradient method is used as an optimizing algorithm. The stator core and winding losses are reduced by the design method. The results are verified by those of the time-step finite element analysis.

  • PDF

On a Balanced Classification Rule

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.453-470
    • /
    • 1995
  • We describe a constrained optimal classification rule for the case when the prior probability of an observation belonging to one of the two populations is unknown. This is done by suggesting a balanced design for the classification experiment and constructing the optimal rule under the balanced design condition. The rule si characterized by a constrained minimization of total risk of misclassification; the constraint of the rule is constructed by the process of equation between Kullback-Leibler's directed divergence measures obtained from the two population conditional densities. The efficacy of the suggested rule is examined through two-group normal classification. This indicates that, in case little is known about the relative population sizes, dramatic gains in accuracy of classification result can be achieved.

  • PDF

Reheating of Semi-Solid Aluminum Alloys and Mechanical Properties of Thixoforged Product (반용융 알루미늄 합금의 재가열 및 Thixoforging 부품의 기계적 성질)

  • 정홍규;강충길
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.437-448
    • /
    • 1999
  • The reheating of the billet in the semi-solid state as quickly and homogeneously as possible is one of the most imposrtant parts. To obtain a fine globular microstructure in cross section of billet, the optimal design of the induction coil for variation of alloys and specimen sizes is necessary. For the thixo-forging process the construction of the reheating data base is very important, because the reheating conditions are different for variation of SSM and billet sizes. So in this study, the optimal coil design of A356 (ALTHIX) and Aι2024 with d×ι=60×90 (mm) to obtain the globular microstructure is theoretically proposed. The suitability of an optimal coil design will be demonstrated by reheating experiments. Finally, the thixoformability of an arbitrarily shaped product is evaluated by its forming variables. The defects and mechanical properties are also investigated.

  • PDF

Optimum Superimposed Training for Mobile OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • Superimposed training (SIT) design for estimating of time-varying multipath channels is investigated for mobile orthogonal frequency division multiplexing (OFDM) systems. The design of optimum SIT consists of two parts: The optimal SIT sequence is derived by minimizing the channel estimates' mean square error (MSE); the optimal power allocation between training and information data is developed by maximizing the averaged signal to interference plus noise ratio (SINR) under the condition of equal powered paths. The theoretical analysis is verified by simulations. For the metric of the averaged SINR against signal to noise ratio (SNR), the theoretical result matches the simulation result perfectly. In contrast to an interpolated frequency-multiplexing training (FMT) scheme or an SIT scheme with random pilot sequence, the SIT scheme with proposed optimal sequence achieves higher SINR. The analytical solution of the optimal power allocation is demonstrated by the simulation as well.

Analysis of Optimal Dynamic Absorbing System considering Human Behavior induced by Transmitted Force

  • Kim, Hyo-Jun;Choe, Eui-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.38-43
    • /
    • 2003
  • In this study, the optimal dynamic absorbing system for the gas operated HIF (high implusive force) device has been investigated. For this purpose, firstly, the dynamic behavior of human body induced by impulsive disturbances has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic absorbing system, the parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation in the actual operating condition.