• Title/Summary/Keyword: Optimal construction cost

Search Result 368, Processing Time 0.025 seconds

Optimization of hydraulic section of irrigation canals in cold regions based on a practical model for frost heave

  • Wang, Songhe;Wang, Qinze;An, Peng;Yang, Yugui;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.133-143
    • /
    • 2019
  • An optimal hydraulic section is critical for irrigated water conservancy in seasonal frozen ground due to a large proportion of water leakage, as investigated by in-situ surveys. This is highly correlated with the frost heave of underlain soils in cold season. This paper firstly derived a practical model for frost heave of clayey soils, with temperature dependent thermal indexes incorporating phase change effect. A model test carried out on clay was used to verify the rationality of the model. A novel approach for optimizing the cross-section of irrigation canals in cold regions was suggested with live updated geometry characterized by three unique geometric constraints including slope of canal, ratio of practical flow section to the optimal and lining thickness. Allowable frost heave deformation and tensile stress in canal lining are utilized as standard in computation iterating with geometry updating while the construction cost per unit length is regarded as the eventual target in optimization. A typical section along the Jinghui irrigation canal was selected to be optimized with the above requirements satisfied. Results prove that the optimized hydraulic section exhibits smaller frost heave deformation, lower tensile stress and lower construction cost.

A Production-Installation Simulation Model of Free-Form Concrete Panels

  • Lim, Jeeyoung;Lee, Donghoon;Na, Youngju;Lim, Chaeyeon;Kim, Sunkuk
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.401-404
    • /
    • 2015
  • Demand on free-form buildings is gradually increasing, yet owing to the difficulty of production-installation work, several problems occur in the construction phase upon construction of a building, including the increased cost and construction duration, and reduced constructibility. To solve these problems, a techonology to produce FCP using a CNC(Computerized Numeric Control) machine is developed. The technology is that the information of designed free-form buildings to the CNC machine is transferred, and the transferred information is used for RTM(Rod-Type Mold, the mold shaped by back-up rods) and PCM(Phase Change Material) shaping, and the shaped RTM and PCM have the role of molds to produce FCP. Construction duration and project cost are limited in building sites, so the efficiency of processes like production-installation of FCP for application of the technology is significant. Since it is almost impossible to change the production-installation process at the construction phase when they are established, process should be deliberately decided. Therefore, the purpose of the study is to propose a production-installation simulation model of free-form concrete panels, in aspect of PCM. This paper is establishing the process for production-installation of FCP, estimating time required by each construction type and proposing a time simulation model that changes according to various constraints based on the analyses. With the time simulation model, it will be possible to build a cost model and to review the optimal construction duration and project cost.

  • PDF

The Research of Optimal Plant Layout Optimization based on Particle Swarm Optimization for Ethylene Oxide Plant (PSO 최적화 기법을 이용한 Ethylene Oxide Plant 배치에 관한 연구)

  • Park, Pyung Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • In the fields of plant layout optimization, the main goal is to minimize the construction cost including pipelines as satisfying all constraints such as safety and operating issues. However, what is the lacking of considerations in previous researches is to consider proper safety and maintenance spaces for a complex plant. Based on the mathematical programming, MILP(Mixed Integer Linear Programming) problems including various constraints can be formulated to find the optimal solution which is to achieve the best economic benefits. The objective function of this problem is the sum of piping cost, pumping cost and area cost. In general, many conventional optimization solvers are used to find a MILP problem. However, it is really hard to solve this problem due to complex inequality and equality constraints, since it is impossible to use the derivatives of objective functions and constraints. To resolve this problem, the PSO (Particle Swarm Optimization), which is one of the representative sampling approaches and does not need to use derivatives of equations, is employed to find the optimal solution considering various complex constraints in this study. The EO (Ethylene Oxide) plant is tested to verify the efficacy of the proposed method.

Development of Cost Data Prototype based on Production Crew by Productivity Analysis of Form Work (거푸집 공사의 생산성 분석을 통한 작업조 기반의 Cost Data Prototype 개발에 관한 연구)

  • Kang, Dong-Wan;Ji, Soung-Min;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.1
    • /
    • pp.44-52
    • /
    • 2012
  • In the cost management of public construction projects, it is an important issue to develop an adequate cost data for estimating the predetermined amount by various methods. For a long time, a standard of estimation in korea is used as a basis for estimating the predetermined amount of public construction. However, they did not have a reasonable cost data based on a labor and equipment productivity analysis. For this reason, it is difficult to make a reasonable and efficient estimation of the costs, and this situation presents an urgent need for more accurate cost data to use in an early phase. This study analyzed the productivity of form work by the CYCLONE model, and presented the model on the number of optimal labor through sensitivity analysis. This CYCLONE model can be useful in analyzing productivity on the various sizes of form. Also, the regression model to estimate the daily output can be used in predicting the amount of labor. Considering the work duration in the regression model is expected to make the daily output estimation much more accurate.

A Study on the Economic Analysis of LNG Combined Cycle Thermal Power Plant in Cost Based Pool Electricity Markets (변동비반영 발전경쟁시장에서 LNG-복합 화력발전소의 경제성 분석에 관한 연구)

  • Lee, Cheon-Ho;Han, Seok-Man;Chung, Koo-Hyung;Kang, Dong-Ju;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1327-1333
    • /
    • 2008
  • Since Cost Based Pool markets has been continued to power markets, Genco. needs economic analysis about investment in power plants. Particularly most Private Genco.s have presently a construction plan about LNG combined cycle thermal power plants. In this paper, we propose a economic analysis method of LNG combined cycle thermal power plants using Economic Dispatch and Optimal Power Flow in CBP markets. Also we develope computation model using it for decision making to build a plant. This method can consider a variation of power facility like power plants and transmission lines in CBP markets. Finally, this dissertation provides a relevant case study to confirm the effect of cost factor to economical efficiency.

Cost optimization of reinforced high strength concrete T-sections in flexure

  • Tiliouine, B.;Fedghouche, F.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.65-80
    • /
    • 2014
  • This paper reports on the development of a minimum cost design model and its application for obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular attention is paid to problem formulation, solution behavior and economic considerations. A typical example problem is considered to illustrate the applicability of the minimum cost design model and solution methodology. Results are confronted to design solutions derived from conventional design office methods to evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC described in Eurocode2. It is shown, among others that optimal solutions achieved using the present approach can lead to substantial savings in the amount of construction materials to be used. In addition, the proposed approach is practically simple, reliable and computationally effective compared to standard design procedures used in current engineering practice.

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.

A Low-Cost Approach for Path Programming of Terrestrial Drones on a Construction Site

  • Kim, Jeffrey;Craig, James
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.319-327
    • /
    • 2022
  • Robots for construction sites, although not deeply widespread, are finding applications in the duties of project monitoring, material movement, documentation, security, and simple repetitive construction-related tasks. A significant shortcoming in the use of robots is the complexity involved in programming and re-programming an automation routine. Robotic programming is not an expected skill set of the traditional construction industry professional. Therefore, this research seeks to deliver a low-cost approach toward re-programming that does not involve a programmer's skill set. The researchers in this study examined an approach toward programming a terrestrial-based drone so that it follows a taped path. By doing so, if an alternative path is required, programmers would not be needed to re-program any part of the automated routine. Changing the path of the drone simply requires removing the tape and placing a different path - ideally simplifying the process and quickly allowing practitioners to implement a new automated routine. Python programming scripts were used with a DJI Robomaster EP Core drone, and a terrain navigation assessment was conducted. The study examined the pass/fail rates for a series of trial run over different terrains. The analysis of this data along with video recording for each trial run allowed the researchers to conclude that the accuracy of the tape follow technique was predictable on each of the terrain surfaces. The accuracy and predictability inform a non-coding construction practitioner of the optimal placement of the taped path. This paper further presents limitations and suggestions for some possible extended research options for this study.

  • PDF

Cost-Effective Model for Energy Saving in Super-Tall Building

  • Song, Kwonsik;Park, Moonseo;Lee, Hyun-Soo;Kim, Sooyoung;Shin, Jinho
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.3
    • /
    • pp.17-22
    • /
    • 2013
  • In many urban cities, super-tall buildings have been being constructed around New York and Chicago as the center since 1930 to improve the efficiency of land use and respond to new residential type. In terms of energy consumption, super-tall buildings are classified as a top energy consumption building. Also, as time passed, the degradation of energy performance occurs in super-tall buildings like general things so that these cannot show the initial performance planned in the design phase. Accordingly, building owners need to make a plan to apply energy saving measures to existing building during the operation phase. In order to select energy saving measures, calculus-based methods and enumerative schemes have been typically used. However, these methods are time-consuming and previous studies which used these methods have problems with not considering the initial construction cost. Consequently, this study proposes a model for selecting an optimal combination of energy saving measures which derives maximum energy saving within allowable cost using genetic algorithms. As a contribution of this research, it would be expected that a model is utilized as one of the decision-making tools during the planning stage for energy saving.

COST-EFFECTIVE MODEL FOR ENERGY SAVING IN SUPER-TALL BUILDING

  • Kwonsik Song;Moonseo Park;Hyun-Soo Lee;Sooyoung Kim;Jinho Shin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.294-299
    • /
    • 2013
  • In many urban cities, super-tall buildings have been being constructed around New York and Chicago as the center since 1930 to improve the efficiency of land use and respond to new residential type. In terms of energy consumption, super-tall buildings are classified as a top energy consumption building. Also, as time passed, the degradation of energy performance occurs in super-tall buildings like general things so that these cannot show the initial performance planned in the design phase. Accordingly, building owners need to make a plan to apply energy saving measures to existing building during the operation phase. In order to select energy saving measures, calculus-based methods and enumerative schemes have been typically used. However, these methods are time-consuming and previous studies which used these methods have problems with not considering the initial construction cost. Consequently, this study proposes a model for selecting an optimal combination of energy saving measures which derives maximum energy saving within allowable cost using genetic algorithms. As a contribution of this research, it would be expected that a model is utilized as one of the decision-making tools during the planning stage for energy saving.

  • PDF