• Title/Summary/Keyword: Optimal Tool

Search Result 1,349, Processing Time 0.043 seconds

Optimum Service Life Management Based on Probabilistic Life-Cycle Cost-Benefit Analysis (확률론적 생애주기비용-이익분석 기반 수명관리 최적화 기법)

  • Kim, Sunyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.19-25
    • /
    • 2016
  • Engineering structures including civil infrastructures require a life-cycle cost and benefit during their service lives. The service life of a structure can be extended through appropriate inspection and maintenance actions. In general, this service life extension requires more life-cycle cost and cumulative benefit. For this reason, structure managers need to make a rational decision regarding the service life management considering both the cost and benefit simultaneously. In this paper, the probabilistic decision tool to determine the optimal service life based on cost-benefit analysis is presented. This decision tool requires an estimation of the time-dependent effective cost-benefit under uncertainty to formulate the optimization problem. The effective cost-benefit is expressed by the difference between the cumulative benefit and life-cycle cost of a deteriorating structure over time. The objective of the optimization problem is maximizing the effective cost-benefit, and the associated solutions are the optimal service life and maintenance interventions. The decision tool presented in this paper can be applied to any deteriorating engineering structure.

Dissimilar Friction Stir Welding Characteristics of Mg Alloys(AZ31 and AZ61) (AZ31와 AZ61 마그네슘 합금의 이종 마찰교반용접 특성)

  • Park, Kyoung Do;Lee, Hae Jin;Lee, Dai Yeol;Kang, Dae Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.99-104
    • /
    • 2017
  • Friction stir welding is a solid-state joining process and is useful for joining dissimilar metal sheets. In this study, the experimental conditions of the friction stir welding were determined by the two-way factorial design to evaluate the characteristics of the dissimilar friction stir welding of AZ31 and AZ61 magnesium alloys. The levels of rotation speed and welding speed, which are welding variables, were 1000, 2000, 3000 rpm and 100, 200, 300 mm/min, respectively. From the results, the greater the rotation speed and the lower the welding speed of the tool were, the greater the tensile strength of the welded part was. The contribution of the welding speed of the tool is larger than that of the rotation speed of the tool. In addition, the optimal conditions for tensile strength in the dissimilar friction stir joint were predicted to be the rotation speed of 3000 rpm and welding speed of 100 mm/min, and the tensile strength under the optimal conditions was estimated to be $214{\pm}6.57Mpa$ with 99% reliability.

A Study on the Optimal Design of Planar Flyback Transformers suitable for Small-size and Low-profile (소형화 및 슬림형에 적합한 평면 플라이백 변압기의 최적 설계에 관한 연구)

  • Na, Hae-Joong;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.828-837
    • /
    • 2020
  • This paper presents the optimal design of planar flyback transformer suitable for small-size and low-profile of AC to DC adapter for 10W tablet. This paper also proposes the injection winding transformer of Hybrid and Drum types capable of the winding method of automatic type and the reduction of transformer size and leakage inductance(Lk) compared to the conventional mass-production flyback transformer with the winding method of manual type. In particular, the injection winding transformer of Drum type proposed in this paper is constructed in a horizontal laying of its transformer to solve the connection problem of copper plate injection winding on the secondary side of the one of Hybrid type. The primary and secondary windings of the injection winding transformer of Hybrid and Drum types used the conventional winding and the copper plate injection winding, respectively. For the injection winding transformer of Hybrid and Drum types proposed in this paper, the optimal design of planar flyback transformer suitable for small-size and low-profile was carried out using Maxwell 2D and 3D tool.

Gate Locations Optimization of an Automotive Instrument Panel for Minimizing Cavity Pressure (금형 내부 압력 최소화를 위한 자동차 인스트루먼트 패널의 게이트 위치 최적화)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Cho, Dong-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 2012
  • Cavity pressure, an important factor in injection molding process, should be minimized to enhance injection molding quality. In this study, we decided the locations of valve gates to minimize the maximum cavity pressure. To solve this problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding analysis CAE tool, using the file parsing method of PIAnO (Process Integration, Automation and Optimization) as a commercial process integration and design optimization tool. In order to reduce the computational time for obtaining the optimal design solution, we performed an approximate optimization using a meta-model that replaced expensive computer simulations. To generate the meta-model, computer simulations were performed at the design points selected using the optimal Latin hypercube design as an experimental design. Then, we used micro genetic algorithm equipped in PIAnO to obtain the optimal design solution. Using the proposed design approach, the maximum cavity pressure was reduced by 17.3% compared to the initial one, which clearly showed the validity of the proposed design approach.

A Study on The Optimization of Plastic Mold Steel Machining Using MQL Supply System (MQL 공급시스템을 이용한 플라스틱 금형강 가공 최적화에 관한 연구)

  • Hong, Kwang-Pyo;Song, Ki-Hyeok;Lee, In-Cheol;Kang, Dong-Sung;Chung, Jae-Hwa;Lim, Dong-Wook;Kim, Woon-Yong;Beck, Si-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.7-14
    • /
    • 2017
  • This study manufactured a minimum quantity lubrication (MQL) supply system and identified the optimal MQL machining cutting conditions for plastic mold steel (SCM440). A series of experiments were consisted of twice. Optimal cutting conditions were derived using the Taguchi method, and cutting force variance; surface roughness; tool wear; and cutting temperature in dry, wet, and MQL machining were measured experimentally for these optimal conditions. The measured results decreased from dry to wet and MQL machining, being particularly large for dry machining due to increased cutting time. Measured MQL machining metrics were similar to those for wet machining, particularly for surface roughness, which is an index of machining quality.

The Automatic Determination of the Optimal Build-Direction in Rapid Prototyping (고속적층조형법에서 최적 적층방향의 자동결정)

  • 채희창
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.150-155
    • /
    • 1997
  • Rapid Prototyping(RP) is the technique which is used to make prototypes or functional parts directly using the 3-D solid data. Before building the prototype, several processes such as transfering 3D data from CAD system(STL) determination of build-direction, adding support structure and slicing are required. Among the above processes. determination of build-direction is the target of this study. The build direction is determined by many factors according to the objective of the user, like part accuracy, number of support structure, build time, amount of trapped volume, etc, But it is not easy to determine the build-direction because there are many factors and some factors have dependent properties with one another. So, in this study the part accuracy, the number of support structures and build time are considered as the main factor to determine the optimal build-direction. To determine the optimal build-direction for increasing part accuracy, sum of projected area which caused stairstepping effect was considered. The less the projected area is the better part accuracy is About the optimal build-direction to minimize the amount of support structure, sum of projected area of facets that require support structures was considered. About the build time, we considered the minimum height of part we intended. About the build time, we considered the minimun height of part we intended to make.

  • PDF

Optimal Design of Skin and Stiffener of Stiffened Composite Shells Using Genetic Algorithms (유전자 기법을 이용한 복합재 보강구조물 외피 및 보강재의 적층각 최적설계)

  • Yoon, I.S.;Choi, H.S.;Kim, C.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.233-236
    • /
    • 2002
  • An efficient method was developed in this study to obtain optimal stacking sequences, thicknesses, and minimum weights of stiffened laminated composite shells under combined loading conditions and stiffener layouts using genetic algorithms (GAs) and finite element analyses. Among many parameters in designing composite laminates determining a optimal stacking sequence that may be formulated as an integer programming problem is a primary concern. Of many optimization algorithms, GAs are powerful methodology for the problem with discrete variables. In this paper the optimal stacking sequence was determined, which gives the maximum critical buckling load factor and the minimum weight as well. To solve this problem, both the finite element analysis by ABAQUS and the GA-based optimization procedure have been implemented together with an interface code. Throughout many parametric studies using this analysis tool, the influences of stiffener sizes and three different types of stiffener layouts on the stacking sequence changes were throughly investigated subjected to various combined loading conditions.

  • PDF

The Study on the Machining Characteristics of 4 inch Wafer for the Optimal Condition (최적 가공 조건을 위한 4인치 웨이퍼의 가공 특성에 관한 연구)

  • Won, Jong-Koo;Lee, Jung-Taik;Lee, Jung-Hun;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.90-95
    • /
    • 2007
  • Single side final polishing is a very important role to stabilize a wafer finally before the device process on the wafer is executed. In this study, the machining variables, such as pressure, machining time, and the velocity of pad table were adopted. These parameters have the major influence on the characteristics of wafer polishing. We investigated the surface roughness changing these variables to find the optimal polishing condition. Pad, slurry, slurry quantity, and oscillation distance were set to the fixed variables. In order to reduce defects and find a stable machining condition, a hall sensor was used on the polishing process. AE sensor was attached to the polishing machine to verify optimal condition. Applying data analysis of the sensor signal, experiments were performed. We can get better surface roughness from loading the quasi static force and improving wafer-holding method.

An optimal classification method for risk assessment of water inrush in karst tunnels based on grey system theory

  • Zhou, Z.Q.;Li, S.C.;Li, L.P.;Shi, S.S.;Xu, Z.H.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.631-647
    • /
    • 2015
  • Engineers may encounter unpredictable cavities, sinkholes and karst conduits while tunneling in karst area, and water inrush disaster frequently occurs and endanger the construction safety, resulting in huge casualties and economic loss. Therefore, an optimal classification method based on grey system theory (GST) is established and applied to accurately predict the occurrence probability of water inrush. Considering the weights of evaluation indices, an improved formula is applied to calculate the grey relational grade. Two evaluation indices systems are proposed for risk assessment of water inrush in design stage and construction stage, respectively, and the evaluation indices are quantitatively graded according to four risk grades. To verify the accuracy and feasibility of optimal classification method, comparisons of the evaluation results derived from the aforementioned method and attribute synthetic evaluation system are made. Furthermore, evaluation of engineering practice is carried through with the Xiakou Tunnel as a case study, and the evaluation result is generally in good agreement with the field-observed result. This risk assessment methodology provides a powerful tool with which engineers can systematically evaluate the risk of water inrush in karst tunnels.

Risk Measures and the Effectiveness of Value-at-Risk Hedging (위험측정치와 VaR헤지의 유효성)

  • Moon, Chang-Kuen;Kim, Chun-Ho
    • International Commerce and Information Review
    • /
    • v.9 no.2
    • /
    • pp.65-86
    • /
    • 2007
  • This paper reviews the properties and application methods of widely used types of risk measures, identifies the rationale and business-side effects of hedging, derives the theoretical formula of optimal hedging ratio, and analyzes the various functional aspects of VaR(Value-at-risk) as a risk measure and a hedging tool. Especially this paper focuses on the characteristics of VaR compared with other risk measures in terms of their own principal determinants and identifies its stronger aspects in the dimension of hedging strategy tools. As well, this paper provides the detailed processes deriving the optimal hedge ratios based on the distributional parameters and risk factors. In addition, this paper presents the detailed and substantial processes of estimating the minimum variance hedge ratio and minimum-VaR hedge ratio using the actual data and shows that the minimum variance hedge ratio proves helpful for many cases although it is not appropriate for the non-linear portfolio including the option contracts. We demonstrate the trade-off relationship between the minimum variance hedge strategy and the minimum-VaR hedge strategy in their hedging costs and performances through calculation of the respective VaRs and variances of unhedged and hedged portfolios and the optimal hedge ratio and hedging effectiveness values for the given long position in US Dollar with the short position in Euro.

  • PDF