• Title/Summary/Keyword: Optimal Tool

Search Result 1,349, Processing Time 0.029 seconds

Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy (Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향)

  • Han, Min-Su;Jeon, Jeong-Il;Jang, Seok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

Machining Speed Enhancement for 5-Axis Milling by Step Length Optimization (보간 길이 최적화에 의한 5축밀링 가공속도 향상)

  • So, B.S.;Jung, Y.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.422-428
    • /
    • 2006
  • In this paper, an NC data optimization approach for enhancing 5-axis machining speed is presented. It is usual to use expensive commercial CAD/CAM programs for NC data of 5-axis machining, since it needs very large calculations for optimal tool positioning and orientation, tool path planning, and collision-free tool path generation. Since commercial CAD/CAM systems have similar functions and efficiency based on common algorithms of reliable theories, they do not have their own unique features for machining speed and efficiency. In other words, most commercial CAD/CAM systems consider only the characteristics of part geometry to be machined, which means that they generate almost the same NC data if the part to be machined is the same, even though different machines are used for the pin. A new approach is proposed for optimizing NC data of 5-axis machining, which is based on the characteristics of the machine to be operated. As a result, the speed of 5-axis machining can increase without losing machining accuracy and surface quality.

Manipulability Analysis of a Parallel Machine Tool: Application to Optimal Link Parameters Design (병렬형 공작기계의 조작성 해석: 기구부 최적설계에 적용)

  • Kim, Jeom-Goo;Hong, Keum-Shik;Park, Frank-C.;Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.213-223
    • /
    • 1999
  • In this paper, input-output transmission characteristics of the Eclipse, which is a parallel machine tool capable of 5 face rapid machining, are investigated. By splitting the weighted Jacobian matrix into two parts, the force and moment transmission characteristics together with the velocity and angular velocity transmission characteristics are analyzed. A new manipulability measure, which combines the volume of the manipulability ellipsoid and the condition number of the splitted Jcobian matrix, is proposed. Two link parameters, the ratio of upper and lower platforms' radii and the length of a supporting link of the Eclipse, are designed by applying the new manipulability measure derived. Computer simulations are provided.

  • PDF

Optimal Machining Condition of Drying Turning (건조 선삭의 최적 가공 조건)

  • Jang, S.S.;Lee, J.I.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.49-55
    • /
    • 2011
  • Recently, various efforts to make more speedy and precision machine tool to improve productivity and also various efforts to solve environmental problem are going on, so that dry cutting in manufacturing industry, which needs environmental conscious design and development of manufacturing technique, is becoming a very important assignment to solve. Because dry cutting does not use cutting fluid, we need other methods that can be used instead of cutting fluid, which does cooling, lubricating, chip washing, and anti-corrosion. Especially, because turning is a continuous work, the consideration of tool life and surface roughness due to continuous heat and poor lubrication is important. The purposes of this paper are the consideration of how well the compressed air can work instead of cutting fluid, and also the development of the method to select the optimum machining condition by the minimum numbers of experiments through the Taguchi method.

Improvement of Mold-Sculptured Surface Quality Based on Tool Shape and Posture (공구 형상 및 자세에 따른 금형 자유곡면 가공품질 향상에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae;Ko, Dae-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.100-106
    • /
    • 2021
  • This paper presents a study on the improvement of the machining quality of sculptured-surfaces of molds according to the shape and posture of the tool. In the existing 3-axis machining, the methods using the ball end-mill and radius end-mill were analyzed for various cutting patterns and compared with those of the 5-axis machining. It was observed that the 5-axis machining using a ball end-mill obtained the finest surface roughness, and for the 3-axis machining, the optimal results were obtained for the one-way machining using a radius end-mill.

A Study on the Machining Operations Planning for the Flexible Machining Process (유연한 절삭가공을 위한 절삭가공계획에 관한 연구)

  • Chang, Yoonsang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.99-107
    • /
    • 1997
  • An algorithm is developed to find optimal machining parameters for multiple machining environments. The cutting rate-tool life (R-T) characteristic curve presents the general loci of optima and is useful for the flexible machining operations planning. The R-T characteristic curve for the machining economics prob- lems with linear-logarithmic tool lofe model may be determined by applying sensitivity analysis to log-dual problems. Three cases of the change of machining environments are considered. An end milling example is constructed to illustrate the algorithm.

  • PDF

The Optimal Design for Noise Reduction of the Intake System in Automobile Using Kriging Model (크리깅을 이용한 자동차 흡기계의 소음 저감에 대한 최적 설계)

  • Sim Hyoun-Jin;Ryu Je-Seon;Cha Kyung-Joon;Oh Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, the regulations of the government and the concerns of people have rise to the interest in noise pollution levels as compared to other vehicles. In this area, many researchers have studied to reduce this noise in the field of automotive engineering. This paper proposes an optimal design scheme to reduce the noise of the intake system by adapting Kriging with two meta-heuristic techniques. For this, as a measuring tool for the performance of the intake system, the performance prediction software, was used. Then, the length and radius of each component of the current intake system are selected as input variables and the orthogonal arrays is adapted as a space-filling design. With these simulated data, we can estimate a correlation parameter in Kriging by solving the nonlinear problem with a genetic algorithm and find an optimal level for the intake system by optimizing Kriging estimated with simulated annealing. We notice that this optimal design scheme gives noticeable results and is a preferable way to analyze the intake system. Therefore, an optimal design for the intake system is proposed by reducing the noise of its system.

A Study on the Optimal Introduction of Step Voltage Regulator(SVR) in Distribution Feeders (고압배전선로용 선로전압조정장치(SVR)의 최적 도입방안에 관한 연구)

  • Lee Eun-Mi;Kim Mi-Young;Rho Dae-Seok;Sohn Sang-wook;Kim Jae-Eon;Park Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.610-618
    • /
    • 2004
  • With the development of industry and the improvement of living standards, better quality in power electric service is required more than ever before. Under these circumstances, to deliver reasonable voltage regulation methods in distribution systems need to be developed. So, This paper deals with optimal introduction of the line voltage regulator (SVR : Step Voltage Regulator) in power distribution systems. First, This paper investigates characteristics of SVR and performs economic evaluation of SVR's introduction by using Present Worth Method. This paper, also suggests proper location and optimal voltage regulation algorithm. In order to deliver suitable voltages to as many customers as possible, the optimal sending voltage of SVR should be decided by the effective operation of voltage regulators at the distribution feeders. The simulation results using a model distribution system and real distribution systems show that the proposed methods can be a practical tool for the voltage regulation in distribution systems.

Integrated Process for Development of an Optimal Axial Flow Fan (Design, RP, Measurement, Injection Molding, Assembly) (최적 축류팬 개발을 위한 통합공정 (설계, 시제품제작, 측정, 금형가공, 사출, 조립))

  • 박성관;최동규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • To develop timely an optimal fan, a design system and a new manufacturing process used step by step have to be integrated. A small sized optimal fan for refrigerators, that was the goal on this project, was developed by the following principal processes. All processes are technologically linked in many directions: The existing fan was measured through reverse engineering. The measured data was used for the basic source of 3D design. The performance tests were carried and used as the data for the evaluation of the existing fan. Flow analysis by FANS-3D/sup [1]/ was performed at the given information (pressure drop and flow rate) to find out the configuration of optimal fan design. The flow patterns were investigated to measure the performance of fan through numerical experiment. The grid point data obtained by the above analysis turned into 3D high efficiency fan model by using CATIA. The product was manufactured by RP process (SLS, SLA) and tested the characteristic curves of the developed fan to compare with the existing fan. The modification of fan design were all examined to see any change in performance and checked to find any deficiency in assembling the fan into a duct. After the plastics flow analysis of the injection molding cycle to ensure acceptable quality fan, an optimal mold was processed by using tool-path for the newly designed fan.

  • PDF