• Title/Summary/Keyword: Optimal Timing

Search Result 333, Processing Time 0.019 seconds

Identification of Optimal Control Parameters for a Pneumatic Active Engine Mount System (공압식 능동형 엔진마운트시스템의 최적 제어매개변수 식별)

  • Kim, Il-Jo;Lee, Jae-Cheon;Choi, Jae-Yong;Kim, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.30-37
    • /
    • 2012
  • Pneumatic Active Engine Mount(PAEM) with open-loop control system has been developed to reduce the transmission of the idle-shake vibration induced by engine effectively and economically. A solenoid valve installed between PAEM and vacuum tank is on-off switched by the Pulse Width Modulate(PWM) control signal to decrease the dynamic stiffness of the engine mount. This paper presents the methodology to identify the optimal values of control parameters of a PAEM, i.e, turn-on timing and duty ratio of PWM signal for 6 different idle driving conditions. A scanning algorithm was first applied to the vehicle test to obtain the approximate optimal control parameters minimizing the vibration at front seat rail and at steering wheel. Then the PAEM system identification was fulfilled to find accurate optimal control parameters by using multi-layer neural networks of Levenberg-Marquardt algorithm with vehicle test data.

Development of Sound Quality for a Vehicle by Controlling CVVT (CVVT 제어를 이용한 차량 음질 개발)

  • Kim, Young-Ki;Cho, Teock-Hyeong;Kim, Jae-Heon;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.622-625
    • /
    • 2007
  • For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, systems for variable valve timing were developed by many automotive researchers. In this work, we investigated the relationship between valve timing and intake orifice noise to improve the NVH (Noise, Vibration and Harshness) performance as well as engine torque and power. Two approaches are conducted, which are engine dynamometer testing and 1-D simulation analysis. Experimental data were measured on about 21 different operating conditions. This experiment shows that the intake and exhaust valve timing related to overlap period influence on the NVH performance, especially intake orifice noise of engine at given range of operation conditions. Similar results are achieved by using 1-D simulation analysis. It is concluded that the optimal strategies of controlling valve timing and tuning intake systems, are necessary to develop engines or vehicles with good sound quality.

  • PDF

A Study on Characteristics of Knocking in Gasoline Engine through ECU Control (ECU 제어를 통한 가솔린 엔진의 노킹 특성에 관한 연구)

  • Yang, Hyun-Soo;Lim, Ju-Hun;Chun, Dong-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.109-115
    • /
    • 2008
  • A burning principle in gasoline engine is the one of being burned, by which a mixer in air and gasoline enters a combustion chamber and causes a spark in the proper timing. This is formed, by which ECU controls the fuel-injection volume and the fuel-injection timing, and determines the performance of engine. The purpose of this study is to test the characteristics on knocking in gasoline engine with the knocking-sensor equipment and to research into the characteristics in knocking while directly controling the optimal igniting timing and the fuel-injection timing through engine ECU. Given controlling ECU by grasping the characteristics in knocking, which becomes the most problem in the engine tuning market, the tuning in a true sense will be formed in gasoline engine.

A Study on the Effect of Valve Timing on the Performance and Idle characteristics of 3-Cylinder LPG Engine (밸브 타이밍 변화가 3기통 LPG 엔진의 성능과 Idle 특성에 미치는 영향에 관한 연구)

  • 이지근;이한풍;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.27-34
    • /
    • 1997
  • The effects of the intake and exhaust valve timing to improve the engine performance in a spark ignition 3-cylinder LPG engine with a closed loop fuel supply system were studied. The engine torque and power have been measured using the 75kW EC-dynamometer while adjusting the optimal fuel consumption ratio with a solen- oid driver. As the results from this experiment, when intake valve opening is $12^{\circ}$ BTDC, intake valve closing is $36^{\circ}$ ABDC, exhaust valve opening is $12^{\circ}$ ATDC, and exhaust valve closing is $36^{\circ}$ BBDC respectively, the best torque characteristics in low and high speeds for a gives engine were obtained. And also we could find that the torque characteristics in low speeds were affected by the timing of exhaust valve open. An increased valve overlap by the EVC delay was ineffectual to the torque characte- ristics improvement in high speeds.

  • PDF

Early Decompression in Acute Spinal Cord Injury : Review and Update

  • Byung-Jou, Lee;Je Hoon, Jeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.1
    • /
    • pp.6-11
    • /
    • 2023
  • Spinal cord injury (SCI) has a significant negative effect on the quality of life due to permanent neurologic damage and economic burden by continuous treatment and rehabilitation. However, determining the correct approach to ensure optimal clinical outcomes can be challenging and remains highly controversial. In particular, with the introduction of the concept of early decompression in brain pathology, the discussion of the timing of decompression in SCI has emerged. In addition to that, the concept of "time is spine" has been added recently, and the mortality and complications caused by SCI have been reduced by providing timely and professional treatment to patients. However, there are many difficulties in establishing international clinical guidelines for the timing of early decompression in SCI because policies for each country and medical institution differ according to the circumstances of medical infrastructure and economic conditions in the surgical treatment of SCI. Therefore, we aim to provide a current review of timing of early decompression in patient with SCI.

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

A Study on Effective Satellite Selection Method for Multi-Constellation GNSS

  • Taek Geun, Lee;Yu Dam, Lee;Hyung Keun, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • In this paper, we propose an efficient satellite selection method for multi-constellation GNSS. The number of visible satellites has increased dramatically recently due to multi-constellation GNSS. By the increased availability, the overall GNSS performance can be improved. Whereas, due to the increase of the number of visible satellites, the computational burden in implementing advanced processing such as integer ambiguity resolution and fault detection can be increased considerably. As widely known, the optimal satellite selection method requires very large computational burden and its real-time implementation is practically impossible. To reduce computational burden, several sub-optimal but efficient satellite selection methods have been proposed recently. However, these methods are prone to the local optimum problem and do not fully utilize the information redundancy between different constellation systems. To solve this problem, the proposed method utilizes the inter-system biases and geometric assignments. As a result, the proposed method can be implemented in real-time, avoids the local optimum problem, and does not exclude any single-satellite constellation. The performance of the proposed method is compared with the optimal method and two popular sub-optimal methods by a simulation and an experiment.

Investigation on the Injection Timing and Double Ignition Method for Heavy-duty LPG SI Lean Burn Engine (액상분사식 대형 LPG 희박연소엔진의 분사시기 및 이점점화에 관한 연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • An LPG engine for heavy-duty vehicles has been developed using liquid phase LPG injection (hereafter LPLi) system which has regarded as one of the next generation LPG fuel supply systems. In this wort to investigate the lean bum characteristics of heavy-duty LPLi engine, various injection timing (SOI, start of injection) and double ignition method were tested. The results showed that lean misfire limit of LPLi engine could be extended. by 0.2 $\lambda$ value, using the optimal SOI timing in LPLi system. Double ignition method test was carried out by installing the second spark plug and modified ignition circuit to ignite two spark plugs simultaneously. Double ignition resulted in the stable combustion under ultra lean bum condition, below $\lambda=1.7$, and extension of lean misfire limit compare to ordinary case. Therefore, LPLi engine with optimal SOI and double ignition method could be normally operated at around $\lambda=1.9$ and showed higher engine performance.

Analysis on Design Factors of the Optimal Adaptive Beamforming Algorithm for GNSS Anti-Jamming Receivers

  • Jang, Dong-Hoon;Kim, Hyeong-Pil;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • This paper analyzes the design factors for GNSS anti-jamming receiver system in which the adaptive beamforming algorithm is applied in GNSS receiver system. The design analysis factors used in this paper are divided into three: antenna, beamforming algorithm, and operation environment. This paper analyzes the above three factors and presents numerical simulation results on antenna and beamforming algorithm.