• Title/Summary/Keyword: Optimal Route Algorithm

Search Result 189, Processing Time 0.03 seconds

Development and Evaluation of Safe Route Service of Electric Personal Assistive Mobility Devices for the Mobility Impaired People (교통약자를 위한 전동 이동 보조기기 안전 경로 서비스의 개발과 평가)

  • Je-Seung WOO;Sun-Gi HONG;Sang-Kyoung YOO;Hoe Kyoung KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • This study developed and evaluated a safe route guidance service for electric personal assistive mobility device used mainly by the mobility impaired people to improve their mobility. Thirteen underlying factors affecting the mobility of electric personal assistive mobility device have been derived through a survey with the mobility impaired people and employees in related organizations in Busan Metropolitan City. After assigning safety scores to individual factors and identifying the relevant factors along routes of interest with an object detection AI model, the safe route for electric personal assistive mobility device was provided through an optimal path-finding algorithm. As a result of comparing the general route of T-map and the recommended route of this study for the identical routes, the latter had relatively fewer obstacles and the gentler slope than the former, implicating that the recommended route is safer than the general one. As future works, it is necessary to enhance the function of a route guidance service based on the real-time location of users and to conduct spot investigations to evaluate and verify its social acceptability.

Time-Dependent Optimal Routing in Indoor Space (실내공간에서의 시간 가변적 최적경로 탐색)

  • Park, In-Hye;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.361-370
    • /
    • 2009
  • As the increasing interests of spatial information for different application area such as disaster management, there are many researches and development of indoor spatial data models and real-time evacuation management systems. The application requires to determine and optical paths in emergency situation, to support evacuees and rescuers. The optimal path in this study is defined to guide rescuers, So, the path is from entrance to the disaster site (room), not from rooms to entrances in the building. In this study, we propose a time-dependent optimal routing algorithm to develop real-time evacuation systems. The network data that represents navigable spaces in building is used for routing the optimal path. Associated information about environment (for example, number of evacuees or rescuers, capacity of hallways and rooms, type of rooms and so on) is assigned to nodes and edges in the network. The time-dependent optimal path is defined after concerning environmental information on the positions of evacuees (for avoiding places jammed with evacuees) and rescuer at each time slot. To detect the positions of human beings in a building per time period, we use the results of evacuation simulation system to identify the movement patterns of human beings in the emergency situation. We use the simulation data of five or ten seconds time interval, to determine the optimal route for rescuers.

  • PDF

Method of Benchmarking Route Choice Based on the Input-similarity Using DEA and SOM (DEA와 SOM을 이용한 투입 요소 유사성 기반의 벤치마킹 경로 선택 방법에 관한 연구)

  • Park, Jae-Hun;Bae, Hye-Rim;Lim, Sung-Mook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.1
    • /
    • pp.32-41
    • /
    • 2010
  • DEA(Data Envelopment Analysis) is the relative efficiency measure among homogeneous DMU(Decision- Making Units) which can be used to useful tool to improve performance through efficiency evaluation and benchmarking. However, the general case of DEA was considered as unrealistic since it consists a benchmarking regardless of DMU characteristic by input and output elements and the high efficiency gap in benchmarking for inefficient DMU. To solve this problem, stratification method for benchmarking was suggested, but simply presented benchmarking path in repeatedly applying level. In this paper, we suggest a new method that inefficient DMU can choice the optimal path to benchmark the most efficient DMU base on the similarity among the input elements. For this, we propose a route choice method that combined a stratification benchmarking algorithm and SOM (Self-Organizing Map). An implementation on real environment is also presented.

A Generous Cooperative Routing Protocol for Vehicle-to-Vehicle Networks

  • Li, Xiaohui;Wang, Junfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5322-5342
    • /
    • 2016
  • In vehicle-to-vehicle (V2V) networks, where selfishness degrades node activity, countermeasures for collaboration enforcement must be provided to enable application of a sage and efficient network environment. Because vehicular networks feature both high mobility and various topologies, selfish behavior judgment and establishment of a stable routing protocol become intensely challenging. In this paper, a two-phase-based generous cooperative routing protocol (called GEC) is presented for V2V networks to provide resistance to selfishness. To detect selfish behaving vehicles, a packet forwarding watchdog and an average connection rate based on the multipath weight method are used, where evidence is gathered from different watchdogs. Then, multihop relay decisions are made using a generous cooperative algorithm based on game theory. Finally, through buffering of the multiple end-to-end paths and judicious choice of optimal cooperative routes, route maintenance phase is capable of dealing with congestion and rapidly exchanging traffic. Specifically, it is proved that the GEC is theoretically subgame perfect. Simulation results show that for V2V networks with inherently selfish nodes, the proposed method isolates uncooperative vehicles and is capable of accommodating both the mobility and congestion circumstances by facilitating information dissemination and reducing end-to-end delay.

Improved Hierarchical Prefix Delegation Protocol for route optimization in nested NEMO (중첩된 NEMO에서의 경로 최적화를 위한 개선된 계층적 프리픽스 할당 프로토콜)

  • Rho, Kyung-Taeg
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.147-155
    • /
    • 2006
  • Hierarchical Prefix Delegation (HPD) protocol refers to a type of solution to problems inherent in non-optimal routing which occurs with Network Mobility (NEMO) basic solution. However, because HPD cannot improve the micro-mobility problems, problem surfaces each time Mobile Network Node (MNN) changes the attachment point; as happens also in a Mobile IPv6 (MIPv6) protocol in sending Binding Update (BU) messages to Home Agent (HA) / Correspondent Nodes(CNs). By applying Hierarchical Mobile IPv6 protocol concept to HPD, this study proposes an algorithm for effectively handling micro-mobility problems which occur with HPD in a nested NEMO environment. By sending BU only to nearby Mobility Anchor Point(MAP) during MNN location change within a MAP's domain, the proposed protocol will alleviate service disruption delays and signaling loads during the handover process, overcoming the limitations of HPD.

  • PDF

Trust based Secure Reliable Route Discovery in Wireless Mesh Networks

  • Navmani, TM;Yogesh, P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3386-3411
    • /
    • 2019
  • Secured and reliable routing is a crucial factor for improving the performance of Wireless Mesh Networks (WMN) since these networks are susceptible to many types of attacks. The existing assumption about the internal nodes in wireless mesh networks is that they cooperate well during the forwarding of packets all the time. However, it is not always true due to the presence of malicious and mistrustful nodes. Hence, it is essential to establish a secure, reliable and stable route between a source node and a destination node in WMN. In this paper, a trust based secure routing algorithm is proposed for enhancing security and reliability of WMN, which contains cross layer and subject logic based reliable reputation scheme with security tag model for providing effective secured routing. This model uses only the trusted nodes with the forwarding reliability of data transmission and it isolates the malicious nodes from the providing path. Moreover, every node in this model is assigned with a security tag that is used for efficient authentication. Thus, by combining authentication, trust and subject logic, the proposed approach is capable of choosing the trusted nodes effectively to participate in forwarding the packets of trustful peer nodes successfully. The simulation results obtained from this work show that the proposed routing protocol provides optimal network performance in terms of security and packet delivery ratio.

A Study on Predicting the demand for Public Shared Bikes using linear Regression

  • HAN, Dong Hun;JUNG, Sang Woo
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • As the need for eco-friendly transportation increases due to the deepening climate crisis, many local governments in Korea are introducing shared bicycles. Due to anxiety about public transportation after COVID-19, bicycles have firmly established themselves as the axis of daily transportation. The use of shared bicycles is spread, and the demand for bicycles is increasing by rental offices, but there are operational and management difficulties because the demand is managed under a limited budget. And unfortunately, user behavior results in a spatial imbalance of the bike inventory over time. So, in order to easily operate the maintenance of shared bicycles in Seoul, bicycles should be prepared in large quantities at a time of high demand and withdrawn at a low time. Therefore, in this study, by using machine learning, the linear regression algorithm and MS Azure ML are used to predict and analyze when demand is high. As a result of the analysis, the demand for bicycles in 2018 is on the rise compared to 2017, and the demand is lower in winter than in spring, summer, and fall. It can be judged that this linear regression-based prediction can reduce maintenance and management costs in a shared society and increase user convenience. In a further study, we will focus on shared bike routes by using GPS tracking systems. Through the data found, the route used by most people will be analyzed to derive the optimal route when installing a bicycle-only road.

A User Optimer Traffic Assignment Model Reflecting Route Perceived Cost (경로인지비용을 반영한 사용자최적통행배정모형)

  • Lee, Mi-Yeong;Baek, Nam-Cheol;Mun, Byeong-Seop;Gang, Won-Ui
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.117-130
    • /
    • 2005
  • In both deteministic user Optimal Traffic Assignment Model (UOTAM) and stochastic UOTAM, travel time, which is a major ccriterion for traffic loading over transportation network, is defined by the sum of link travel time and turn delay at intersections. In this assignment method, drivers actual route perception processes and choice behaviors, which can become main explanatory factors, are not sufficiently considered: therefore may result in biased traffic loading. Even though there have been some efforts in Stochastic UOTAM for reflecting drivers' route perception cost by assuming cumulative distribution function of link travel time, it has not been fundamental fruitions, but some trials based on the unreasonable assumptions of Probit model of truncated travel time distribution function and Logit model of independency of inter-link congestion. The critical reason why deterministic UOTAM have not been able to reflect route perception cost is that the route perception cost has each different value according to each origin, destination, and path connection the origin and destination. Therefore in order to find the optimum route between OD pair, route enumeration problem that all routes connecting an OD pair must be compared is encountered, and it is the critical reason causing computational failure because uncountable number of path may be enumerated as the scale of transportation network become bigger. The purpose of this study is to propose a method to enable UOTAM to reflect route perception cost without route enumeration between an O-D pair. For this purpose, this study defines a link as a least definition of path. Thus since each link can be treated as a path, in two links searching process of the link label based optimum path algorithm, the route enumeration between OD pair can be reduced the scale of finding optimum path to all links. The computational burden of this method is no more than link label based optimum path algorithm. Each different perception cost is embedded as a quantitative value generated by comparing the sub-path from the origin to the searching link and the searched link.

The Bisection Seed Detection Heuristic for Solving the Capacitated Vehicle Routing Problem (한정 용량 차량 경로 탐색 문제에서 이분 시드 검출 법에 의한 발견적 해법)

  • Ko, Jun-Taek;Yu, Young-Hoon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • The Capacitated Vehicle Routing Problem (CVRP) is the problem that the vehicles stationed at central depot are to be optimally routed to supply customers with demands, satisfying vehicle capacity constraints. The CVRP is the NP-hard as it is a natural generalization of the Traveling Salesman Problem (TSP). In this article, we propose the heuristic algorithm, called the bisection seed detection method, to solve the CVRP. The algorithm is composed of 3-phases. In the first phase, we work out the initial cluster using the improved sweep algorithm. In the next phase, we choose a seed node in each initial cluster by using the bisection seed detection method, and we compose the rout with the nearest node from each seed. At this phase, we compute the regret value to decide the list of priorities for the node assignment. In the final phase, we improve the route result by using the tabu search and exchange algorithm. We compared our heuristic with different heuristics such as the Clark-Wright heuristic and the genetic algorithm. The result of proposed heuristic show that our algorithm can get the nearest optimal value within the shortest execution time comparatively.

  • PDF

Energy-efficient Routing in MIMO-based Mobile Ad hoc Networks with Multiplexing and Diversity Gains

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.700-713
    • /
    • 2015
  • It is critical to design energy-efficient routing protocols for battery-limited mobile ad hoc networks, especially in which the energy-consuming MIMO techniques are employed. However, there are several challenges in such a design: first, it is difficult to characterize the energy consumption of a MIMO-based link; second, without a careful design, the broadcasted RREP packets, which are used in most energy-efficient routing protocols, could flood over the networks, and the destination node cannot decide when to reply the communication request; third, due to node mobility and persistent channel degradation, the selected route paths would break down frequently and hence the protocol overhead is increased further. To address these issues, in this paper, a novel Greedy Energy-Efficient Routing (GEER) protocol is proposed: (a) a generalized energy consumption model for the MIMO-based link, considering the trade-off between multiplexing and diversity gains, is derived to minimize link energy consumption and obtain the optimal transmit model; (b) a simple greedy route discovery algorithm and a novel adaptive reply strategy are adopted to speed up path setup with a reduced establishment overhead; (c) a lightweight route maintenance mechanism is introduced to adaptively rebuild the broken links. Extensive simulation results show that, in comparison with the conventional solutions, the proposed GEER protocol can significantly reduce the energy consumption by up to 68.74%.