• Title/Summary/Keyword: Optimal Prime Field

Search Result 12, Processing Time 0.031 seconds

On p-ary Bent Functions Defined on Finite Fields (유한체 상에서 정의된 p진 Bent 함수)

  • 김영식;장지웅;노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.763-769
    • /
    • 2004
  • It is known that a bent function corresponds to a perfect nonlinear function, which makes it difficult to do the differential cryptanalysis in DES and in many other block ciphers. In this paper, for an odd prime p, quadratic p-ary bent functions defined on finite fields are given from the families of p-ary sequences with optimal correlation properly. And quadratic p-ary bent functions, that is, perfect nonlinear functions from the finite field F $_{p^{m}}$ to its prime field $F_{p}$ are constructed by using the trace functions. trace functions.

A New Digital Image Steganography Approach Based on The Galois Field GF(pm) Using Graph and Automata

  • Nguyen, Huy Truong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4788-4813
    • /
    • 2019
  • In this paper, we introduce concepts of optimal and near optimal secret data hiding schemes. We present a new digital image steganography approach based on the Galois field $GF(p^m)$ using graph and automata to design the data hiding scheme of the general form ($k,N,{\lfloor}{\log}_2p^{mn}{\rfloor}$) for binary, gray and palette images with the given assumptions, where k, m, n, N are positive integers and p is prime, show the sufficient conditions for the existence and prove the existence of some optimal and near optimal secret data hiding schemes. These results are derived from the concept of the maximal secret data ratio of embedded bits, the module approach and the fastest optimal parity assignment method proposed by Huy et al. in 2011 and 2013. An application of the schemes to the process of hiding a finite sequence of secret data in an image is also considered. Security analyses and experimental results confirm that our approach can create steganographic schemes which achieve high efficiency in embedding capacity, visual quality, speed as well as security, which are key properties of steganography.

Study of Modular Multiplication Methods for Embedded Processors

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.145-153
    • /
    • 2014
  • The improvements of embedded processors make future technologies including wireless sensor network and internet of things feasible. These applications firstly gather information from target field through wireless network. However, this networking process is highly vulnerable to malicious attacks including eavesdropping and forgery. In order to ensure secure and robust networking, information should be kept in secret with cryptography. Well known approach is public key cryptography and this algorithm consists of finite field arithmetic. There are many works considering high speed finite field arithmetic. One of the famous approach is Montgomery multiplication. In this study, we investigated Montgomery multiplication for public key cryptography on embedded microprocessors. This paper includes helpful information on Montgomery multiplication implementation methods and techniques for various target devices including 8-bit and 16-bit microprocessors. Further, we expect that the results reported in this paper will become part of a reference book for advanced Montgomery multiplication methods for future researchers.

Development of a smart wireless sensing unit using off-the-shelf FPGA hardware and programming products

  • Kapoor, Chetan;Graves-Abe, Troy L.;Pei, Jin-Song
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.69-88
    • /
    • 2007
  • In this study, Field-Programmable Gate Arrays (FPGAs) are investigated as a practical solution to the challenge of designing an optimal platform for implementing algorithms in a wireless sensing unit for structuralhealth monitoring. Inherent advantages, such as tremendous processing power, coupled with reconfigurable and flexible architecture render FPGAs a prime candidate for the processing core in an optimal wireless sensor unit, especially when handling Digital Signal Processing (DSP) and system identification algorithms. This paper presents an effort to create a proof-of-concept unit, wherein an off-the-shelf FPGA development board, available at a price comparable to a microprocessor development board, was adopted. Data processing functions, including windowing, Fast Fourier Transform (FFT), and peak detection, were implemented in the FPGA using a Matlab Simulink-based high-level abstraction tool rather than hardware descriptive language. Simulations and laboratory tests were carried out to validate the design.

New Constructions of p-ary Bent Sequences (새로운 p진 Bent 수열의 생성)

  • 김영식;장지웅;노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.930-935
    • /
    • 2003
  • In this paper, using bent functions defined [n the finite field we generalized the construction method of the family of p-ary bent sequences with balanced and optimal correlation property introduced by Kumar and Moreno for an odd prime p[3], called a generalized p-ary bent sequence. It turns out that the family of balanced p-ary sequences with optimal correlation property introduced by Moriuchi and Imamura [6] is a special case of the generalized p-ary bent sequences.

Application Effect of the Controlled Release Fertilizer Applied on Seedling Tray at Seeding Time in Rice (벼 모판 파종동시처리 완효성비료 시용효과)

  • Won, Tae-Jin;Choi, Byoung-Rourl;Cho, Kwang-Rae;Lim, Gab-June;Chi, Jeong-Hyun;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.204-212
    • /
    • 2019
  • The optimal application rate of a controlled release fertilizer (CRF) on the growth, yield, and seeding time of rice grown on seedling trays was investigated. The experimental field was located at $37^{\circ}22^{\prime}10^{{\prime}{\prime}}N$ latitude and $127^{\circ}03^{\prime}85^{{\prime}{\prime}}E$ longitude in Hwaseong, Gyeonggi-do, Republic of Korea. The soil in the paddy field was a clay loam. The CRF used in the experiment contained $300g\;kg^{-1}$ of nitrogen, $60g\;kg^{-1}$ of phosphate, and $60g\;kg^{-1}$ of potassium, respectively. The CRF was applied at the rate of 0, 200, 300, 400, 500, and 600 grams on rice seedling tray compared with the field application based on soil testing (control), respectively. The CRF can be applied as single application(which can replace basal fertilizer application and two top dressing application) directly to the seedling tray, and showed the minimum release at the seedling period. Considering the plant growth, nitrogen use efficency and yield of rice, the optimal application rate of developed CRF was 500 g per seedling tray and the yield of rice at this application rate was $4.92{\sim}5.04Mg\;ha^{-1}$. The regression formula between the rice yield and application rates of CRF was as follows ; "$Y=0.0002{\chi}^2+0.0963{\chi}+411.6$($R^2$ : 0.9922) in 2010 and $Y=8E-6{\chi}^2+0.2723{\chi}+344.04$($R^2$:0.9864) in 2011, Y : Rice yield ($Mg\;ha^{-1}$), ${\chi}$ : Application rate (grams) of controlled release fertilizer". The optimum application rates of CRF per rice seedling tray by regression formula was 498 grams in 2010 and 513 grams in 2011.

PARAMETER DEPENDENCE OF SMOOTH STABLE MANIFOLDS

  • Barreira, Luis;Valls, Claudia
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.825-855
    • /
    • 2019
  • We establish the existence of $C^1$ stable invariant manifolds for differential equations $u^{\prime}=A(t)u+f(t,u,{\lambda})$ obtained from sufficiently small $C^1$ perturbations of a nonuniform exponential dichotomy. Since any linear equation with nonzero Lyapunov exponents has a nonuniform exponential dichotomy, this is a very general assumption. We also establish the $C^1$ dependence of the stable manifolds on the parameter ${\lambda}$. We emphasize that our results are optimal, in the sense that the invariant manifolds are as regular as the vector field. We use the fiber contraction principle to establish the smoothness of the invariant manifolds. In addition, we can also consider linear perturbations, and thus our results can be readily applied to the robustness problem of nonuniform exponential dichotomies.

The Treatment of Osmidrosis Axillae by Use of Modified Skoog's Method (Skoog씨 변법을 이용한 액취증의 치료)

  • Yim, Young-Min;Choi, Jong Woo;Kim, Gi Ho
    • Archives of Plastic Surgery
    • /
    • v.32 no.2
    • /
    • pp.245-249
    • /
    • 2005
  • Various surgical procedures have been described for treating osmidrosis axillare. Elimination of the apocrine glands is prime goal. Optimal operative procedure is characterized as follows: minimal axillary scar(which has cosmetic merits), less complications such as hematoma and seroma, short and less painful recuperating period, minimal damage to the skin and low recurrence rate. Three types of incision technique in subdermal shaving method have beeb commoly used. First, single incision method has an advantage of minimal scarring but more recurrence due to incomplete removal of apocrine glands may occur. Second, double incision technique(Bipedicled flap) has advantages of complete excision, low recurrence rate and relatively minimal scarring, but it could cause frequent necrosis of skin and folding of skin flap. Skoog's method is the third method, which makes four flaps by offset cruciate incisions. It is a better technique in aspect of complete excision of apocrine glands and low recurrence rate but has disadvantages such as development of hypertrophic scar or scar contracture in the line that lies perpendicular to natural axillary skin crease. We used a modified procedure which has shorter length in vertical and transverse incision compared with the classic Skoog's method. We dissected further subcutaneous tissue through the diamond-shaped incision and utilize wide operation field that provide adequate excision of subdermal tissue and proper hemostasis. Between 1999 and 2004, we operated 160 osmidrosis axillare in 80 patients in this technique. Most patients obtained satisfactory result with very low complications. Hematoma or seroma 3.1% Infection 0.6% Partial wound disruption 10% Recurrence 1.2%. Modified Skoog's method for treating osmidrosis axillae could be a optimal technique providing wide operation field for adequate excision of apocrine glands and proper hemostasis and leaving relatively inconspicuous scar and low incidence of scar contracture.

The Most Efficient Extension Field For XTR (XTR을 가장 효율적으로 구성하는 확장체)

  • 한동국;장상운;윤기순;장남수;박영호;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.6
    • /
    • pp.17-28
    • /
    • 2002
  • XTR is a new method to represent elements of a subgroup of a multiplicative group of a finite field GF( $p^{6m}$) and it can be generalized to the field GF( $p^{6m}$)$^{[6,9]}$ This paper progress optimal extention fields for XTR among Galois fields GF ( $p^{6m}$) which can be aplied to XTR. In order to select such fields, we introduce a new notion of Generalized Opitimal Extention Fields(GOEFs) and suggest a condition of prime p, a defining polynomial of GF( $p^{2m}$) and a fast method of multiplication in GF( $p^{2m}$) to achieve fast finite field arithmetic in GF( $p^{2m}$). From our implementation results, GF( $p^{36}$ )longrightarrowGF( $p^{12}$ ) is the most efficient extension fields for XTR and computing Tr( $g^{n}$ ) given Tr(g) in GF( $p^{12}$ ) is on average more than twice faster than that of the XTR system on Pentium III/700MHz which has 32-bit architecture.$^{[6,10]/ [6,10]/6,10]}$

Fast Generation of Elliptic Curve Base Points Using Efficient Exponentiation over $GF(p^m)$) (효율적인 $GF(p^m)$ 멱승 연산을 이용한 타원곡선 기저점의 고속 생성)

  • Lee, Mun-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.3
    • /
    • pp.93-100
    • /
    • 2007
  • Since Koblitz and Miller suggested the use of elliptic curves in cryptography, there has been an extensive literature on elliptic curve cryptosystem (ECC). The use of ECC is based on the observation that the points on an elliptic curve form an additive group under point addition operation. To realize secure cryptosystems using these groups, it is very important to find an elliptic curve whose group order is divisible by a large prime, and also to find a base point whose order equals this prime. While there have been many dramatic improvements on finding an elliptic curve and computing its group order efficiently, there are not many results on finding an adequate base point for a given curve. In this paper, we propose an efficient method to find a random base point on an elliptic curve defined over $GF(p^m)$. We first show that the critical operation in finding a base point is exponentiation. Then we present efficient algorithms to accelerate exponentiation in $GF(p^m)$. Finally, we implement our algorithms and give experimental results on various practical elliptic curves, which show that the new algorithms make the process of searching for a base point 1.62-6.55 times faster, compared to the searching algorithm based on the binary exponentiation.