• 제목/요약/키워드: Optimal Pressure Control

검색결과 238건 처리시간 0.03초

휠체어 추진속도 및 등받이 경사각도에 따른 둔부 압력 변화 특성 (Characteristics of the Buttock Interface Pressure According to Wheelchair Propulsion Speed and Various Back Reclined Seating Position)

  • 권혁철;공진용
    • 한국전문물리치료학회지
    • /
    • 제12권2호
    • /
    • pp.1-10
    • /
    • 2005
  • Pressure ulcers are serious complications of tissue damage that can develop in patients with diminished pain sensation and diminished mobility. Pressure ulcers can result in irreversible tissue damage caused by ischemia resulting from external loading. There are many intrinsic and extrinsic contributors to the problem, including interface tissue pressure, shear, temperature, moisture, hygiene, nutrition, tissue tolerance, sensory and motor dysfunction, disease and infection, posture, and body support systems. The purposes of this study were to investigate the relationship between buttock interface pressure and seating position, wheelchair propulsion speed. Seated-interface pressure was measured using the Force Sensing Array pressure mapping system. Twenty subjects propelled wheelchair handrim on a motor-driven treadmill at different velocities (40, 60, 80 m/min) and seating position used recline ($100^{\circ}$, $110^{\circ}$, $120^{\circ}$) with a wheelchair simulator. Interface pressure consists of average (mean of the pressure sensor values) and maximum pressure (highest individual sensor value). The results of this study were as follows; No significant correlation in maximum/average pressure was found between a static position and a 40 m/min wheelchair propulsion (p>.05). However, a significant increase in maximum/average pressure were identified between conditions of a static position and 60 m/min, and 80 m/min wheelchair propulsion (p<.05). No significant correlation in maximum pressure were found between a $90^{\circ}$ recline (neutral position) and a $100^{\circ}$, $110^{\circ}$, or $120^{\circ}$ recline of the wheelchair back (p>.05). No significant difference in average pressure was found between conditions of a $90^{\circ}$ recline and both a $100^{\circ}$ and $110^{\circ}$ recline of wheelchair back. However, a significant reduction in average pressure was identified between conditions of a $90^{\circ}$ and $120^{\circ}$ recline of wheelchair back (p<.05). This study has shown some interesting results that reclining the seat by $120^{\circ}$ reduced average interface pressure, including the reduction or prevention in edema. And interface pressure was greater during dynamic wheelchair propulsion compared with static seating. Therefore, the optimal seating position and seating system ought to provide postural control and pressure relief. We need an education on optimal seating position and a suitable propulsion speeds for wheelchair users.

  • PDF

미국 Medicare 투석환자 치료의 질 지표 개발 : 4가지 주요 치료영역을 바탕으로 (Developing a Composite Quality Indicator to Assess The Quality of Care for US Medicare End-stage Renal Disease Patients)

  • 강혜영
    • 한국의료질향상학회지
    • /
    • 제7권2호
    • /
    • pp.204-216
    • /
    • 2000
  • Background : There has been a concern that the quality of care provided to end-stage renal disease (ESRD) patients in the United States may not be as good as recommended. This paper illustrates a composite measure to assess, the quality of care received by ESRD patients undergoing in-center hemodialysis by incorporating outcomes for 4 major treatment areas. The 4 treatment areas are: dialysis treatments, anemia control, nutritional management, and blood pressure control. Methods : The major data source for the study was the United States Renal Data System (USRDS) Dialysis Morbidity and Mortality Study Wave 1 (DMMS-1) d Sixteen categories of a composite quality indicator were constructed by combining 4 dichotomous variables (16=2*2*2*2). representing the optimal vs. less than optimal level of outcome for each of the 4 treatment outcome measure respectively. Optimal outcome level for each treatment area was defined based on the recommendation from the National Kidney Foundation: (a) delivered dialysis doses (Kt/V) ${\geq}$ 1.2; (b) hematocrit level ${\geq}$ 30%; (c) serum albumin concentration ${\geq}$ 3.8g/dl ; and (d) blood pressure of <140 / <90mmHg. The 16 quality indicator were ranked according to their relative quality weights, which were estimated from its association with the relative risk of survival, adjusting for patient's baseline severity and dialysis facility characteristics. Results : Out of the entire sample of 2,179 patients, only 229 (10%) meet th recommended outcome levels for all 4 treatment areas. Overall, the study patients were distributed evenly over the 16 quality indicators, indicating a great variation in the quality of ESRD care. It appears that the rank of the 16 quality-indicators is driven by serum albumin concentration, suggesting that serum albumin concentration may be the most powerful predictor of ESRD patient survival among the 4 outcome measures. Conclusion : The developed quality indicator has the advantage of describin a range of care for dialysis patients and thus providing a more complete picture of care as compared to previous studies that have focused on only single or few components of the ESRD care.

  • PDF

구름접촉피로시험을 통한 고속철도 레일연마량 분석 (Analysis for Optimal Rail Grinding Amount by Rolling Contact Fatigue Test in High Speed Railway)

  • 장기성;성덕룡;박용걸;최진유;이동형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2115-2124
    • /
    • 2011
  • The rail surface defects which are generated on repeated rolling contact fatigue are getting increased according to high speed, high density, and minimum weight. In addition, Increasing noise and vibration are affected by these also impact load generated as well. Because of this phenomenon, more serious and critical damages were occurred. In fact, in order to control them, the rail grinding were conducted. However, there are not enough researches to make an criteria of generating optimal rail grinding amount in Korea. This study evaluated how depth of hardening on rail surface is formed and suggested optimal rail grinding amount by RCF(rolling contact fatigue) test with generated contact pressure between KTX wheel and UIC60 rail by applying FEM analysis. Therefore, the amount was generated approximately 0.2mm/20MGT to maintain integrity of rail surface by getting rid of depth of hardening on rail according to rail accumulated passing tonnage.

  • PDF

Application of LQR for Phase-Locked Loop Control Systems

  • Khumma, Somyos;Benjanarasuth, Taworn;Isarakorn, Don;Ngamwiwit, Jongkol;Wanchana, Somsak;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.520-523
    • /
    • 2004
  • A phase-locked loop control system designed by using the linear quadratic regulator approach is presented in this paper. The system thus designed is optimal system when system is in locked state and the parameter value of loop filter which is an active PI filter can be obtained easily. By considering the structure of loop filter of phase-locked loop is included in the process to be controlled, a type 1 servo system can be constructed when voltage control oscillator is considered as an integrator. The integral gain of the proposed system obtained by linear quadratic regulator approach can be used as an optimal value to design the parameter of loop filter. The implemented result in controlling the second-order lag pressure process by using the proposed scheme show that the system response is fast with no overshoot and no steady-state error. Furthermore, the experimental results are also shown in term of output disturbance effect rejection, tracking and process parameter changed.

  • PDF

대구 지하철 구간내 선형 변동에 따른 소음 및 진동 저감 방안 연구 (The optimal control methods to reduce the environmental hazards surrounding the YoungNam Uni. Rotary of City Taegu constructing Subway Line No.1)

  • 지왕률;최재진;강상수;강대우
    • 터널과지하공간
    • /
    • 제7권2호
    • /
    • pp.116-129
    • /
    • 1997
  • The objective of this study is to predict the minimization effect of the noise and vibration during the construction and the train operation regarding to the design modification of the Taegu Subway Line No. 1. It was suggested optimal control blasting methods to reduce the causing vibration Nuance to the resident in City Taegu and also proposed the better governing method to decrease the environmental hazard to the near buildings and residents during the train operation. When the high-density gaseous reaction of explosion products exerts a high pressure in motion outward, a dynamic stress field will be created in the surrounding buildings. Therefore, in the region close to the charge, permanent damage begins to occur at a great critical level of partial velocity, that is difficult from different structure as working conditions. It is reliable to predict that the damages could be reduced if we know the peak velocity and the exact reasons through the conducting of detail studies of structural analysis of the related buildings with the optimal blasting designs. A blasting technique should be deemed to take advantage of the reduction of damage of the surrounding rocks and structures to improve the in-city blasting. This is a typical in-city blasting operation where success depends on closely controlling the ground vibrations in case of better designed blasting methods. There are techniques that can be applied to prevent large vibrations from damaging the important buildings through the Route Modification of the Taegu Subway Line No. 1.

  • PDF

지지부 위치와 벽면 두께변화에 따른 구형 인공위성 추진제 탱크의 강도해석 (Stress Analysis of the Spherical Satellite Propellant Tank With Respect to the Change of Location of the Lug and Tank Wall Thickness)

  • 한근조;장우석;안성찬;심재준;전형용
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.31-37
    • /
    • 1998
  • The structure of satellite consists of six parts which are control system, power system, thermal control system, remote measurement command system, propellant system and thrust system. In these parts, propellant system consists of propellant tank and thrust device. What we want to perform is optimum design to minimize the weight of propellant tank. In order to design optimal propellant tank, several parameters should be adopted from the tank geometry like the relative location of the lug and variation of the wall thickness. The analysis was executed by finite element analysis for finding optimal design parameters. The structure was divided into three parts consisting of the initial thickness zone, the transitional Bone, and the weak zone, whose effects on the pressure vessel strength was investigated. Finally the optimal lug location and the three zone thickness were obtained and the weight was compared with the uniform thickness vessel.

  • PDF

발전소용 고압 바이패스 밸브의 유동해석 (Analysis of Flow through High Pressure Bypass Valve in Power Plant)

  • 조안태;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2558-2562
    • /
    • 2007
  • In the present work, flow characteristics analysis has been performed for steam turbine bypass control valve (single-path type). The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. Shear stress transport (SST) model is used as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. Mass flow rate at maximum plug opening condition is compared with the designed mass flow rate.

  • PDF

메탄올 혼합 연료의 기화율 변화에 따른 연소특성에 관한 실험적 연구 (A Study on the Combustion Characteristics according to Evaporation rate of Methanol - Blended Fuel)

  • 조행묵
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.24-34
    • /
    • 1997
  • This paper describes the investigation of combustion characteristics of gasoline-methanol blend in constant volume combustion chamber. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaporating a blend fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deteriorated by decreasing surrounding temperature of fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deter orated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for methanol blend fuel was influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

보일러 풍압 제어 계통의 모델링 (MODELING OF PRESSURE CONTROL SYSTEM OF BOILER)

  • 박민호;목형수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.362-366
    • /
    • 1987
  • The amount of inflowing Air into the boiler has controlled by manipulating the opening of valve, damper and vane, as fan operated by induction motor operats at constant speed, but these control methods are not efficient. Thus VVVf(Variable Voltage Variable Frequency) control of fan has selected to improve efficiency and to acquire power savings. Control system of Air Flow is affected by nonlinearity caused by load variation, vane opening, etc. The analysis of control parameter causing nonlinearity is needed to acquire optimal control and excellent transient response. This paper provides modeling of boiler with various load conditions and vane opening, and analysis of this system.

  • PDF

Reinforcement learning-based control with application to the once-through steam generator system

  • Cheng Li;Ren Yu;Wenmin Yu;Tianshu Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3515-3524
    • /
    • 2023
  • A reinforcement learning framework is proposed for the control problem of outlet steam pressure of the once-through steam generator(OTSG) in this paper. The double-layer controller using Proximal Policy Optimization(PPO) algorithm is applied in the control structure of the OTSG. The PPO algorithm can train the neural networks continuously according to the process of interaction with the environment and then the trained controller can realize better control for the OTSG. Meanwhile, reinforcement learning has the characteristic of difficult application in real-world objects, this paper proposes an innovative pretraining method to solve this problem. The difficulty in the application of reinforcement learning lies in training. The optimal strategy of each step is summed up through trial and error, and the training cost is very high. In this paper, the LSTM model is adopted as the training environment for pretraining, which saves training time and improves efficiency. The experimental results show that this method can realize the self-adjustment of control parameters under various working conditions, and the control effect has the advantages of small overshoot, fast stabilization speed, and strong adaptive ability.