• Title/Summary/Keyword: Optimal Phase

Search Result 1,676, Processing Time 0.025 seconds

Optimal Voltage Vector Selection Method for Torque Ripple Reduction in the Direct Torque Control of Five-phase Induction Motors

  • Kang, Seong-Yun;Shin, Hye Ung;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1203-1210
    • /
    • 2017
  • This paper presents an improved switching selection method for the direct torque control (DTC) of five-phase induction motors (IMs). The proposed method is conducted using optimal switching selection. A five-phase inverter has 32 voltage vectors which are divided into 30 nonzero voltage vectors and two zero voltage vectors. The magnitudes of the voltage vectors consist of large, medium, and small voltage vectors. In addition, these vectors are related to the torque response and torque ripple. When a large voltage vector is selected in a drive system, the torque response time decreases with an increased torque ripple. On the other hand, when a small voltage vector is selected, the torque response time and torque ripple increase. As a result, this paper proposes an optimal voltage vector selection method for improved DTC of a five-phase induction machine depending on the situation. Simulation and experimental results verify the effectiveness of the proposed control algorithm.

Design Methodology for Optimal Phase-Shift Modulation of Non-Inverting Buck-Boost Converters

  • Shi, Bingqing;Zhao, Zhengming;Li, Kai;Feng, Gaohui;Ji, Shiqi;Zhou, Jiayue
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1108-1121
    • /
    • 2019
  • The non-inverting buck-boost converter (NIBB) is a step-up and step-down DC-DC converter suitable for wide-input-voltage-range applications. However, when the input voltage is close to the output voltage, the NIBB needs to operate in the buck-boost mode, causing a significant efficiency reduction since all four switches operates in the PWM mode. Considering both the current stress limitation and the efficiency optimization, a novel design methodology for the optimal phase-shift modulation of a NIBB in the buck-boost mode is proposed in this paper. Since the four switches in the NIBB form two bridges, the shifted phase between the two bridges can serve as an extra degree of freedom for performance optimization. With general phase-shift modulation, the analytic current expressions for every duty ratio, shifted phase and input voltage are derived. Then with the two key factors in the NIBB, the converter efficiency and the switch current stress, taken into account, an objective function with constraints is derived. By optimizing the derived objective function over the full input voltage range, an offline design methodology for the optimal modulation scheme is proposed for efficiency optimization on the premise of current stress limitation. Finally, the designed optimal modulation scheme is implemented on a DSPs and the design methodology is verified with experimental results on a 300V-1.5kW NIBB prototype.

The Study on Optimal PWM for 3 Phase Induction Motor Drive (3상 유도전동기의 운전을 위한 Optimal PWM에 관한 연구)

  • 이윤종;서기영;정동화
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.9
    • /
    • pp.368-375
    • /
    • 1985
  • This paper describes the OPTIMAL PWM strategy to reduce harmonic losses for a variaboe-speed drive of an induction motor. This OPTIMAL theory is the strategy which can reduce motor losses by defining harmonic losses as a performance index and achieving it's minimization. This PWM strategy is compared with the conventional NATURAL PWM technique by a numerical method, and verified the validity of numerical method by a result of implementing in a practical 1 Hp-3 Phase induction motor drive system. Also, we could achieve a maximum efficiency to drive an induction motor by selecting appropriately one alternative between OPTIMAL and NATURAL PWM techniques, and employing it in a full driving range.

  • PDF

Optimal Design of a Two-phase BLDC Motor Considering Efficiency and Torque Ripple

  • Kim, Jae-Beom;You, Yong-Min;Kang, Sun-Il;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1131-1137
    • /
    • 2013
  • This paper introduces novel a two-phase permanent magnet BLDC (PMBLDC) motor with both an asymmetric tooth and an auxiliary tooth in order to improve the dead point, efficiency and torque ripple. To calculate the merits of introducing each of the asymmetric tooth and the auxiliary tooth, characteristic analysis is performed respectively using finite element method (FEM). To maximize performance, we propose a novel model which combines the asymmetric tooth and the auxiliary tooth. To maximize the efficiency of the novel model, an optimal design is processed using the Kriging method and a genetic algorithm. Finally, an experiment is used to confirm the initial and optimal design results.

Pump Light Porer of Wideband Optical Phase Conjugator Dependence on Amplifier Spacing in 320 Gbps WDM Systems with MSSI

  • Lee Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.735-744
    • /
    • 2006
  • In this paper, the optimum pump light powers of optical phase conjugator(OPC) are numerically investigated as a function of amplifier spacing in 1,200 km $8{\times}40$ Gbps WDM systems with 0.1, 0.4, 0.8, or 1.6 ps/nm/km dispersion coefficient. It is confirmed that the variation of optimal pump light power dependence on amplifier spacing for NRZ transmission system is smaller than that for RZ transmission system through the evaluations and analysis of eye opening penalty(EOP) characteristics. And, in both cases of NRZ and RZ transmission, the variation of optimal pump light power is more increased as amplifier spacing becomes longer. Additionally, it is confirmed that the best amplifier spacing in NRZ and RZ transmission system is 50 km.

A Novel Instantaneous Torque Control Scheme of Brushless Permanent Magnet Motor (브러시리스 영구자석 전동기의 새로운 순시토오크 제어 방법)

  • 최근국;박한웅;박성준;원태현;송달섭;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.862-867
    • /
    • 1999
  • In general, the realization of high performance brushless permanent magnet motors which are widely used in servo drive is focused on the linear control for ripple-free torque. This is also the main problem that should be solved in all AC motors including induction motor to achieve high performance control, and recent papers deal with this problem. In this paper, the novel optimal excitation scheme of brushless permanent magnet motor producing loss-minimized ripple-free torque based on the d-q-0 reference frame is presented including 3 phase unbalanced condition. The optimized phase current waveforms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work can minimize the torque ripple by the optimal excitation current for brushless permanent magnet motor with any arbitrary phase back EMF waveform. Simulation and experimental results prove the validity and practical applications of the proposed control scheme.

  • PDF

Improvement of Bit Error Rate of 16×40 Gbps NRZ-formated WDM Signals over 1,000km NZ-DSF using MSSI with Optimal Parameters (1,000km의 비 영 분산 천이 광섬유로 구성된 WDM 시스템에서 최적 파라미터를 갖는 MSSI를 이용한 NRZ 형식의 16×40 Gbps WDM 신호의 비트 에러율 개선)

  • Lee, Young Kyo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.111-119
    • /
    • 2010
  • In this paper the numerical methods of finding out the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersion are proposed, which are able to effectively compensate overall channels in $16{\times}40$ Gbps WDM system. And the compensation characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the reception performances are largely improved in the system with the induced optimal parameters than in the system with MSSI through the analyzing the eye opening penalty (EOP) and bit error rate (BER) characteristics. It is also confirmed that two optimal parameters depend on each other, but are less related with the procedural problem about the first optimal value among these parameters.

The Design of IMC-PID Controller Considering a Phase Scaling Factor (위상 조절 인자를 고려한 IMC-PID 제어기의 설계)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1618-1623
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain and phase margins, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

Replacement Model after Extended Two-phase Warranty (연장된 이단계 보증 이후의 교체모형)

  • Jung, Ki Mun
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.197-204
    • /
    • 2021
  • Under the two-phase warranty, the warranty period is divided into two intervals, one of which is for renewing replacement warranty, and the other is for minimal repair warranty. Jung[13] discusses the two types of extended two-phase warranty models. In this paper, we suggest the replacement model after the extended two-phase warranty that has been proposed by Jung[13]. To determine the optimal replacement policy, we adopt the expected cost rate per unit time. So, the expressions for the total expected cost, the expected length of the cycle and the expected cost rate per unit time from the user's point of view are derived. Also, we discuss the optimal replacement policy and the uniqueness of the solution for the optimization. Furthermore, the numerical examples are provided to illustrate the proposed the replacement model.

Beam Curve Optimization for Minimizing the Phase Errors of Rotman Lens (Rotman 렌즈의 위상 오차 최소화를 위한 빔 곡선 최적화)

  • Park, Joo-Rae;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.864-871
    • /
    • 2014
  • In this paper, we propose an optimization method for obtaining beam curve which minimize the phase errors of Rotman lens. This method is based on idea that 3 path lengths from a beam port through equal phase points, which consist of the center point of array antenna and two points placed symmetrically or asymmetrically along array antenna, to the corresponding phase front are equal. According to this method, the optimal locations of beam ports can be obtained directly by finding each equal phase point set on array antenna to minimize the phase errors for each beam direction. Simulation results show that the proposed method is the most optimal and effective method for determining the beam curve of Rotman lens with low phase errors.