• Title/Summary/Keyword: Optimal Path Search Algorithm

Search Result 136, Processing Time 0.027 seconds

Mobile Agent Based Route Search Method Using Genetic Algorithm (유전 알고리즘을 이용한 이동 에이전트 기반의 경로 탐색 기법)

  • Ji, Hong-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2037-2043
    • /
    • 2015
  • Proposed algorithm in this thesis introduced cells, units of router group, to conduct distributed processing of previous genetic algorithm. This thesis presented ways to reduce search delay time of overall network through cell-based genetic algorithm. Also, through this experiment, in case of a network was damaged in existing optimal path algorithm, Dijkstra algorithm, the proposed algorithm was designed to route an alternative path and also as it has a 2nd shortest path in cells of the damaged network so it is faster than Dijkstra algorithm, The study showed that the proposal algorithm can support routing of alternative path, if Dijkstra algorithm is damaged in a network.

유전 알고리즘을 이용한 최적경로 탐색

  • Kim, Gyeong-Nam;Jo, Min-Seok;Lee, Hyeon-Gyeong
    • CDE review
    • /
    • v.21 no.2
    • /
    • pp.34-38
    • /
    • 2015
  • In case of the big city, choosing the adequate root of which we can reach the destination can affect the driver's condition and driving time. so it is quite important to find the optimal routes for arriving the destination as considering the factors, such as driving conditions or travel time and so on. In this paper, we develop route choice model with considering driving conditions and travel time, and it can search the optimal path which make drivers reduce their fatigues using genetic algorithm.

  • PDF

Design and Implementation of Optimal Path Search Service Using GPS Information in Photo File (사진에 포함된 GPS정보를 이용한 최적화된 경로탐색 서비스 설계 및 구현)

  • Kim, Jun-Yeong;Kim, Seog-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.199-207
    • /
    • 2012
  • In this paper, we designed and implemented path search system using GPS information in photo. The system extracts EXIF information included in a photo to get path information and performs path search by applying the shortest path algorithm with the use of GPS information out of information, which was extracted in this way. And then it shows the obtained path information on web by utilizing Yahoo Map API. For this, the system is designed using a method of extracting location information in a photo and path sorting through applying the shortest path algorithm. UI(User Interface) was implemented using Yahoo Map API. Based on that, we implemented path search service using photo file that is included GPS information.

An Economic Ship Routing System Based on a Minimal Dynamic-cost Path Search Algorithm (최소동적비용 경로탐색 알고리즘 기반 선박경제운항시스템)

  • Joo, Sang-Yeon;Cho, Tae-Jeong;Cha, Jae-Mun;Yang, Jin-Ho;Kwon, Yung-Keun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.2
    • /
    • pp.79-86
    • /
    • 2012
  • An economic ship routing means to sail a ship with a goal of minimizing the fuel consumption by utilizing weather forecast information, and various such systems have been recently studied. For a successful economic ship routing system, an efficient algorithm is needed to search an optimal geographical path, and most of the previous systems were approaching to that problem through a minimal static-cost path search algorithm based on the Dijkstra algorithm. To apply that kind of search algorithm, the cost of every edge assigned with the estimated fuel consumption should be constant. However, that assumption is not practical at all considering that the actual fuel consumption is determined by the weather condition when the ship will pass the edge. To overcome such a limitation, we propose a new optimal ship routing system based on a minimal dynamic-cost path search algorithm by properly modifying the Dijkstra algorithm. In addition, we propose a method which efficiently reduces the search space by using the $A^*$ algorithm to decrease the running time. We compared our system with the shortest path-based sailing method over ten testing routes and observed that the former reduced the estimated fuel consumption than the latter by 2.36% on average and the maximum 4.82% with little difference of estimated time of arrival.

A Study on Alternative Paths for Spread of Traffic (교통량 분산을 위한 대체경로 연구)

  • 서기성
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.97-108
    • /
    • 1997
  • For the purpose of decreasing economic loss from the traffic jam, a car route guidance system efficiently utilizing the existing roads has attracted a great deal of attention. In this paper, the search algorithm for optimal path and alternative paths, which is the main function of a car route guidance system, was presented using evolution program. Search efficiency was promoted by changing the population size of path individuals in each generation, applying the concept of age and lifetime to path individuals. Through simulation on the virtual road-traffic network consisting of 100 nodes with various turn constraints and traffic volumes, not only the optimal path with the minimal cost was obtained, avoiding turn constraints and traffic congestion, but also alternative paths with similar costs and acceptable difference was acquired, compared with optimal path.

  • PDF

A Study on Bicycle Route Selection Using Optimal Path Search (최적 경로 탐색을 이용한 자전거 경로 선정에 관한 연구)

  • Baik, Seung Heon;Han, Dong Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.425-433
    • /
    • 2012
  • Dijkstra's algorithm is one of well-known methods to find shortest paths over a network. However, more research on $A^*$ algorithm is necessary to discover the shortest route to a goal point with the heuristic information rather than Dijkstra's algorithm which aims to find a path considering only the shortest distance to any point for an optimal path search. Therefore, in this paper, we compared Dijkstra's algorithm and $A^*$ algorithm for bicycle route selection. For this purpose, the horizontal distance according to slope angle and average speed were calculated based on factors which influence bicycle route selection. And bicycle routes were selected considering the shortest distance or time-dependent shortest path using Dijkstra's or $A^*$ algorithm. The result indicated that the $A^*$ algorithm performs faster than Dijkstra's algorithm on processing time in large study areas. For the future, optimal path selection algorithm can be used for bicycle route plan or a real-time mobile services.

A Route Information Provision Strategy in ATIS Considering User's Route Perception of Origin and Destination (ATIS에서 기종점의 경로인지특성을 반영한 경로정보제공방안)

  • Cho Chong-Suk;Sohn Kee-Min;Shin Seong-Il
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.9-22
    • /
    • 2005
  • Route travel cost in transportation networks consists of actual route travel cost and route perception cost. Since the route perception cost is differently perceived according to each origin and each destination, route search has limitation to reflect the note perception cost due to route enumeration problem. Thus, currently employed advanced traveller information systems (ATIS) have considered only actual route travel cost for providing route information. This study proposes an optimal and a K-route searching algorithm which are able to reflect the route perception cost but encompass route enumeration problem. For this purpose, this research defines the minimum nit of route as a link by adopting the link label technique in route searching, therefore the comparison of two adjacent links which can be finally expanded the comparison of two routes. In order to reflect the characteristics of route perception in real situation, an optimal shortest cost path algorithm that both the forward search from the origin and the backward search from the destination can be simultaneously processed is proposed. The proposed algorithm is applied for finding K number of shortest routes with an entire-path-deletion-type of K shortest route algorithm.

  • PDF

Development of A Turn Label Based Optimal Path Search Algorithm (Turn Label 기반 최적경로탐색 알고리즘 개발)

  • Meeyoung Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.1-14
    • /
    • 2024
  • The most optimal route-search algorithm thus far has introduced a method of applying node labels and link labels. Node labels consider two nodes simultaneously in the optimal route-search process, while link labels consider two links simultaneously. This study proposes a turn-label-based optimal route-search technique that considers two turns simultaneously in the process. Turn-label-based optimal route search guarantees the optimal solution of dynamic programming based on Bellman's principle as it considers a two-turn search process. Turn-label-based optimal route search can accommodate the advantages of applying link labels because the concept of approaching the limit of link labels is applied equally. Therefore, it is possible to reflect rational cyclic traffic where nodes allow multiple visits without expanding the network, while links do not allow visits. In particular, it reflects the additional cost structure that appears in two consecutive turns, making it possible to express the structure of the travel-cost function more flexibly. A case study was conducted on the metropolitan urban railway network consisting of transportation card terminal readers, aiming to examine the scalability of the research by introducing parameters that reflect psychological resistance in travel with continuous pedestrian transfers into turn label optimal path search. Simulation results showed that it is possible to avoid conservative transfers even if the travel time and distance increase as the psychological resistance value for continuous turns increases, confirming the need to reflect the cost structure of turn labels. Nevertheless, further research is needed to secure diversity in the travel-cost functions of road and public-transportation networks.

Searching optimal path using genetic algorithm (유전 알고리즘을 이용한 최적 경로 탐색)

  • Kim, Kyungnam;cho, Minseok;Lee, Hyunkyung
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.479-483
    • /
    • 2015
  • In case of the big city, choosing the adequate root of which we can reach the destination can affect the driver's condition and driving time. so it is quite important to find the optimal routes for arriving the destination as considering the factors, such as driving conditions or travel time and so on. In this paper, we develop route choice model with considering driving conditions and travel time, and it can search the optimal path which make drivers reduce their fatigues using genetic algorithm.

  • PDF

Design and Implementation of the Foot-and-Mouth Disease Prevention System using RTLS (RTLS를 이용한 구제역 예방 시스템의 설계 및 구현)

  • Lee, Ki-Young;Kim, Kyu-Ho;Kwun, Tae-Min;Lim, Myung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.69-74
    • /
    • 2011
  • In this paper, we propose a foot-and-mouth disease prevention system using the RTLS technology and $A^*$ algorithm-based optimal path search method to avoid foot-and-mouth disease areas. The main features and contributions of the proposed system are as follows. First, the proposed system is developed based on active-tag for identifying status and location information of livestock. Second, the system is newly designed based on $A^*$ algorithm for supporting optimal path search services. The performance evaluation of the proposed system is performed via simulation. The results of performance evaluation show that the proposed system can efficiently support the optimal path search services.