DOI QR코드

DOI QR Code

Development of A Turn Label Based Optimal Path Search Algorithm

Turn Label 기반 최적경로탐색 알고리즘 개발

  • Received : 2023.05.26
  • Accepted : 2024.04.02
  • Published : 2024.04.30

Abstract

The most optimal route-search algorithm thus far has introduced a method of applying node labels and link labels. Node labels consider two nodes simultaneously in the optimal route-search process, while link labels consider two links simultaneously. This study proposes a turn-label-based optimal route-search technique that considers two turns simultaneously in the process. Turn-label-based optimal route search guarantees the optimal solution of dynamic programming based on Bellman's principle as it considers a two-turn search process. Turn-label-based optimal route search can accommodate the advantages of applying link labels because the concept of approaching the limit of link labels is applied equally. Therefore, it is possible to reflect rational cyclic traffic where nodes allow multiple visits without expanding the network, while links do not allow visits. In particular, it reflects the additional cost structure that appears in two consecutive turns, making it possible to express the structure of the travel-cost function more flexibly. A case study was conducted on the metropolitan urban railway network consisting of transportation card terminal readers, aiming to examine the scalability of the research by introducing parameters that reflect psychological resistance in travel with continuous pedestrian transfers into turn label optimal path search. Simulation results showed that it is possible to avoid conservative transfers even if the travel time and distance increase as the psychological resistance value for continuous turns increases, confirming the need to reflect the cost structure of turn labels. Nevertheless, further research is needed to secure diversity in the travel-cost functions of road and public-transportation networks.

지금까지의 최적경로탐색 알고리즘은 노드표지와 링크표지를 적용하는 방안이 소개되었다. 노드표지는 2개의 노드를 최적경로 탐색과정에서 동시에 고려한다. 링크표지는 2개의 링크를 탐색과정에서 동시에 고려한다. 본 연구는 2개의 회전을 탐색과정에서 동시에 고려하는 회전표지기반 최적경로탐색기법을 제안한다. 회전표지기반 최적경로탐색은 2개의 회전을 탐색과정에서 고려하기 때문에 Bellman(1957)의 최적원리에 근거한 동적프로그래밍의 최적해가 보장된다. 한편 회전표지기반 최적경로탐색은 링크표지의 극한 접근 개념을 동일하게 적용하기 때문에 링크표지를 적용하는 장점을 수용할 수 있다. 따라서 네트워크의 확장없이 노드는 복수의 방문이 허용되면서 링크는 방문이 허용되지 않는 합리적 순환통행을 반영하는 것이 가능하다. 특히 2개의 연속회전에서 나타나는 추가적인 비용구조를 반영하는 특성이 포함되어 통행비용함수의 구조를 보다 유연하게 표현하는 것이 가능하다. 교통카드 단말기로 구성된 수도권 도시철도 네트워크를 대상으로 시행된 사례연구는 연속된 보행환승이 나타나는 통행에 대한 심리적 저항감을 나타내는 파라메타를 Turn Label 최적경로탐색에 도입하여 연구의 현실적 확장성을 검토하였다. 연속회전에 대한 심리적 저항값이 커지면서 통행시간 및 거리가 늘어나도 연속된 환승을 우회하는 방안으로 시뮬레이션 결과가 도출되어 Turn Label의 비용구조를 반영하는 것이 확인되었다. 향후 도로교통망 및 대중교통망의 통행비용함수에 대해 다양성을 확보하기 위한 추가적인 연구의 진행이 필요하다.

Keywords

References

  1. Bellman, R.(1957), On the Theory of Dynamic Programming, Princeton University Press, Princeton.
  2. Caldwell, T.(1961), "On Finding Minimum Routes in a Network With Turn Penalties", Communications of the ACM, vol. 4, no. 2, pp.107-108. https://doi.org/10.1145/366105.366184
  3. Choi, K.(1995), "Network Representation Schemes for U-Turn and Implementation in the Vine-Based Dijkstra Shortest Path Algorithm", Korean Society of Transportation, vol. 13, no. 3, pp.35-52.
  4. Dial, R.(1969), "Algorithm 350: Shortest Path Forest with Topological Ordering", Journal of the Association for Computing Machinery, vol. 12, pp.632-633. https://doi.org/10.1145/363269.363610
  5. Dial, R., Glover, F., Karney, D. and Klingman, D.(1979), "A Computational Analysis of Alternative Algorithms and Labeling Techniques for Finding Shortest Path Trees", Networks, vol. 9, no. 3, pp.215-248. https://doi.org/10.1002/net.3230090304
  6. Dijkstra, E. W.(1959), "A Note on Two Problems in Connexion with Graphs", Numerische Mathematik, vol. 1, pp.269-271. https://doi.org/10.1007/BF01386390
  7. Kirby, R. F. and Potts, R. B.(1969), "The Minimum Route Problem for Networks with Turn Penalties and Prohibition", Transportation Research, vol. 3, pp.397-408. https://doi.org/10.1016/S0041-1647(69)80022-5
  8. Lee, M.(2004), Transportation Network Models and Algorithms Considering Directional Delay and Prohibitions for Intersection Movement, Ph.D. Dissertation, University of Wisconsin at Madison.
  9. Moore, E. F.(1957), The Shortest Path through A Maze, Harvard University Press, Cambridge.
  10. Noh, J. and Namgoong, S.(1995), "Development of Shortest Path Finding Technique for Urban Transportation Network", Journal of Korea Planning Association, vol. 30, no. 5, pp.153-167.
  11. Thomas, R.(1991), Traffic Assignment Technique, Avebury Technical, Academic Publishing Group.