• 제목/요약/키워드: Optimal PI Controller

검색결과 102건 처리시간 0.024초

유전알고리즘을 사용한 HVDC용 퍼지 제어기의 설계 (Tuning of Fuzzy Logic Current Controller for HVDC Using Genetic Algorithm)

  • Jong-Bo Ahn;Gi-Hyun Hwang;June Ho Park
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권1호
    • /
    • pp.36-43
    • /
    • 2003
  • This paper presents an optimal tuning method for Fuzzy Logic Controller (FLC) of current controller for HVDC using Genetic Algorithm(GA). GA is probabilistic search method based on genetics and evolution theory. The scaling factors of FLC are tuned by using real-time GA. The proposed tuning method is applied to the scaled-down HVDC simulator at Korea Electrotechnology Research Institute(KERI). Experimental result shows that disturbances are well-damped and the dynamic performances of FLC have the better responses than those of PI controller for small and large disturbances such as ULTC tap change, reference DC current change and DC ground fault.

CRA를 이용한 인버터 강인제어기 설계 (Rubust controller for inverter using CRA)

  • 이진목;박가우;이재문;정헌선;노세진;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.98-100
    • /
    • 2007
  • This paper proposes a robust digital controller for PWM voltage source inverter using CRA method. The usual inverter controller for the operation of constant voltage and constant frequency consists of a double looped PI controller for the outer voltage controller and the inner current controller, of which the order of characteristic polynomial is high and so the gain tuning is difficult. Considering the limited switching frequency of the devices and sampling frequency of the digital controller, the gain tuning is usually based on the engineering experiences with the try and error method. In this paper, the error-space approach is used to get the system model including the controller with low order, and the characteristic ratio assignment (CRA) method is proposed for the design of robust controller which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. The PSiM simulation and experience results are shown to verify the validity of the proposed controller.

  • PDF

마이크로 컴퓨터를 이용한 모형 제어계의 최적설계에 관한 연구 - PI제어계 설계 - (Study on the Optimal Design of Linear Control System Using Microcomputer - Design of PI Control System -)

  • 양주호
    • 수산해양기술연구
    • /
    • 제25권1호
    • /
    • pp.29-34
    • /
    • 1989
  • 이상과 같은 제어계의 구성방법으로 제어계를 설계할 경우에는 오차신호에 대한 PI제어기와 플란트의 상태피이드백을 아울러 행하는 제어계로 됨을 알 수 있으며, 또한 응답 시뮬레이션 결과로부터 알 수 있듯이 본 연구에서 제안하는 방법으로 제어기를 구성할 경우 양호한 제어가 가능하다. Fig.3의 플로우챠트의 그림에서 점선으로 표시된 실시간제어실험의 프로그램은 구성은 되어 있으나 실제로 실험을 행하지 못한 아쉬움이 있으며, 다음 기회에 이 부분의 실험도 행하고자 한다.

  • PDF

3상 대칭 시스템의 최단시간 전류제어 (Minimum Time Current Control in 3-Phase Balanced Systems)

  • 최종우;설승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권6호
    • /
    • pp.313-320
    • /
    • 2002
  • In this paper, a new current controller with fast transient response is Proposed. The basic concept is to find the optimal control voltage for tracking the reference current with minimum time under the voltage limit constraint. The generalized solution of the minimum time current control in the systems are presented in this paper. With the generalized solution, the minimum time current controller can be easily applied to all the 3-phase balanced system. Through the simulation and the experiment, it is observed that the proposed controller has much less transient time than the conventional synchronous PI regulator.

이동 로봇의 퍼지 재점착 제어 (Fuzzy Re-adhesion Control for Wheeled Robot)

  • 권선구;허욱열;김진환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.30-32
    • /
    • 2005
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and floor decreases suddenly, the robot begins slip. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weight. Secondly, proposed fuzzy logic is applied to the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takagi-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena for the controller performance in the re-adhesion control strategy.

  • PDF

Multiobjective PI Controller Tuning of Multivariable Boiler Control System Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.78-86
    • /
    • 2003
  • Multivariable control system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, Pill Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the Pill controller has to be manually tuned by trial and error. This paper suggests a tuning method of the Pill Controller for the multivariable power plant using an immune algorithm, through computer simulation. Tuning results by immune algorithms based neural network are compared with the results of genetic algorithm.

Simultaneous Control of Frequency Fluctuation and Battery SOC in a Smart Grid using LFC and EV Controllers based on Optimal MIMO-MPC

  • Pahasa, Jonglak;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.601-611
    • /
    • 2017
  • This paper proposes a simultaneous control of frequency deviation and electric vehicles (EVs) battery state of charge (SOC) using load frequency control (LFC) and EV controllers. In order to provide both frequency stabilization and SOC schedule near optimal performance within the whole operating regions, a multiple-input multiple-output model predictive control (MIMO-MPC) is employed for the coordination of LFC and EV controllers. The MIMO-MPC is an effective model-based prediction which calculates future control signals by an optimization of quadratic programming based on the plant model, past manipulate, measured disturbance, and control signals. By optimizing the input and output weights of the MIMO-MPC using particle swarm optimization (PSO), the optimal MIMO-MPC for simultaneous control of the LFC and EVs, is able to stabilize the frequency fluctuation and maintain the desired battery SOC at the certain time, effectively. Simulation study in a two-area interconnected power system with wind farms shows the effectiveness of the proposed MIMO-MPC over the proportional integral (PI) controller and the decentralized vehicle to grid control (DVC) controller.

부하 주파수 제어를 위한 퍼지 로직 기반 확장 적분 제어 (Fuzzy Logic Based Extended Integral Control for Load Frequency Control)

  • 류헌수;이종기;김석주;김백;문영현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.210-213
    • /
    • 2001
  • This study presents an effective variable forgetting factor method based on fuzzy logic to suppress frequency droop in extended integral load frequency control. The performance of the extended integral control is greatly dependent on the decaying factor. For an optimal or near optimal performance, it is necessary that the decaying factor as well as the feedback gains should be changed very quickly in response to changes in the system dynamics. However, because of its time-varing characteristic, the optimal decaying factor is difficult to be selected analytically. By adopting fuzzy set theory, the decaying factor can be determined quickly to respond to the variation of the feedback signals. This study builds a fuzzy rule base with use of the change of frequency and its rate as inputs. The computer simulation has been conducted for the single machine system. The simulation results show that the proposed fuzzy 1o81c based controller yields more improved control performance than the conventional PI controller.

  • PDF

게인 스케줄링을 이용한 광대역 온도제어기의 설계 (Design of Temperature based Gain Scheduled Controller for Wide Temperature Variation)

  • 정재현;김정한
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.831-838
    • /
    • 2013
  • This paper focused on the design of an efficient temperature controller for a plant with a wide range of operating temperatures. The greater the temperature difference a plant has, the larger the nonlinearity it is exposed to in terms of heat transfer. For this reason, we divided the temperature range into five sections, and each was modeled using ARMAX(auto regressive moving average exogenous). The movement of the dominant poles of the sliced system was analyzed and, based on the variation in the system parameters with temperature, optimal control parameters were obtained through simulation and experiments. From the configurations for each section of the temperature range, a temperature-based gain-scheduled controller (TBGSC) was designed for parameter variation of the plant. Experiments showed that the TBGSC resulted in improved performance compared with an existing proportional integral derivative (PID) controller.

Matlab SISO TOOL을 이용한 ESS용 양방향 벅-부스트 컨버터 제어기 설계 기법 (Bi-directional Buck-Boost Converter Controller Design Method for ESS using Matlab SISO TOOL)

  • 박해찬;김일송
    • 전력전자학회논문지
    • /
    • 제21권6호
    • /
    • pp.457-464
    • /
    • 2016
  • This study proposes a bi-directional buck-boost converter controller design method for ESS using the MATLAB SISO tool. The conventional two-loop controller design is based on a continuous S-domain model that designs each controller independently. The demerit of the conventional method is that optimal performance is not easily achieved and extensive trials and errors are required because two-loop systems interact with one another. Using the MATLAB SISO tool based on the design method proposed in this work overcomes the disadvantages of the conventional method. In the proposed method, the SISO tool can select the location of the poles and zeroes of the open loop system, thereby facilitating the effective design of a high-performance controller. The design sequence is detailed systematically, and the performance of the method is verified with a computer simulation and 10 kW experimental system.