• Title/Summary/Keyword: Optimal Operation

Search Result 2,824, Processing Time 0.028 seconds

A study on automatic selection of optimal cutting condition on machining in view of economics (기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구)

  • 이길우;이용성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

Optimal design of binary current leads cooled by cryogenic refrigerator (극저온 냉동기로 냉각되는 이중전류도입선의 최적설계)

  • Song, S.J.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

A Study on the Effective Operation of HVAC Systems on Manufacturing Plants by EnergyPlus and PSO Algorithm (EnergyPlus와 PSO알고리즘을 이용한 제조플랜트 냉난방/공조시스템의 최적 운영에 관한 연구)

  • Lee, Eon;Jeong, Jin Woo;Zhao, Wen Bin;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.2
    • /
    • pp.120-128
    • /
    • 2013
  • Recently, the importance of the HVAC system (Heating, Ventilating and Air Conditioning System) is growing because comfortable working environment has emerged as important element for enhancing work efficiency. HVAC system is a general term of a system that collectively creates desired temperature and state through heating and air conditioning. HVAC system consists of many objects, so it requires a lot of constraints for its effective operation. Thus, specific strategy is needed for an optimal operation of HVAC System for plant. In this paper, manufacturing plants which have HVAC systems has been modeled and the objective function and constraints for an effective operation have been defined. And new strategy for an effective operation of HVAC system with energy simulations has been proposed.

Magnetic and Thermal Analysis of a Water-cooled Permanent Magnet Linear Synchronous Motor

  • Zhang, Xinmin;Lu, Qinfen;Cheng, Chuanying;Ye, Yunyue
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.498-504
    • /
    • 2012
  • The water-cooled Permanent Magnet Linear Synchronous Motor (PMLSM) has a wide range of applications due to high efficiency, high thrust force density and high acceleration. In order to ensure normal operation and maximum output, both the magnetic and thermal performance are vital to be considered. Based on ANSYS software, electromagnetic and thermal finite-element analysis (FEA) models of a 14-pole, 12-slot water-cooled PMLSM are erected adopting suitable assumptions. Firstly, the thrust force and force ripple with different current densities are calculated. Secondly, the influence of different water flow on the motor heat dissipation and force performance under different operationional conditions are investigated and optimized. Furthermore, for continuous operation, the temperature rise and thrust feature are studied under the rated load 8A, the proper temperature $120^{\circ}C$ and the limited temperature $155^{\circ}C$. Likewise, for short-time operation, the maximum duration is calculated when applied with a certain large current. Similarly, for intermittent operation, load time as well as standstill time are determined with the optimal current to achieve better thrust performance.

Bid-based Direct Load Control Framework Under Electricity Markets (전력시장 환경하에 입찰기반의 직접부하제어 운영방안)

  • Lee, Ho-Chul;Song, Sung-Hwan;Yoon, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.455-461
    • /
    • 2009
  • This paper proposes Direct Load Control(DLC) operation scheme using a bidding system and the methodology to value proper quantity decided by the DLC program, which is a kind of resources for stabilization of electricity market price during peak times by managing consumer electricity demand. Since DLC program in Korea is based on the contract with the customers participating in this program, it is difficult to anticipate voluntary participation. That is, incentive for participants in DLC program is insufficient. To cope with this point, it is necessary to develop a new market mechanism and market compatible operation scheme for DLC programs. DLC market mechanism is deemed to be equipped with iterative bidding system, independent operation from energy market, and interactive with bidding information on energy market. With this market mechanism, it is important to find the optimal operation point of DLC allowing for the factors of stabilizing the electricity market price and compensating DLC implementation. This paper focuses on the mathematical approaches for the bid-based DLC operation scheme and examines several scenarios for the following technical justifications: 1) stabilization of electricity market price during peak times, 2) elasticity of demand.

Prediction of practically chargeable cold energy in an ice storage system (빙축열시스템의 실질적인 최대 축열 가능량 예측)

  • Lee, D.-Y.;Kang, B.H.;Kim, M.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.133-146
    • /
    • 1999
  • The charge operation of an ice storage system has been analyzed in this paper. The thermal characteristics of major components of the ice storage system. i.e., the refrigerator and the ice storage tank are evaluated from performance tests on an existing ice storage system. Based on the measured data for thermal characteristics, a simulation is carried out for the charge operation and the effect of the refrigerator size on the system performance is investigated. The results indicate that the larger the refrigerator size for a given storage capacity, the lower the inlet temperature of the ice storage tank so that the lower the efficiency of charge operation. It is also found that there exists an optimal size of the refrigerator with which the ice storage at the end of the charge operation is maximized, but the complete charge is not possible even with the optimally sized refrigerator. This leads to the result that the design capacity of the storage tank should be larger than the required amount of cold energy for the daytime cooling considering the practically chargeable amount of cold energy during the nighttime. Where the cooling load sharing of the storage is 40%, the nominal capacity of an ice storage tank needs to be larger than the required storage amount by 30%.

  • PDF

Operation of Container Cranes Using ℓ1-Optimal Control (1-최적제어를 이용한 컨테이너 크레인의 운전)

  • Kim Young-Han;Chang Sang-Mok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.409-413
    • /
    • 2005
  • The existing control techniques for the operation of a container crane satisfy the terminal condition of controlled variables, but the outcome of input computation is inadequate for the operation of the crane due to heavy movement of inputs. In this study, a new control technique employing a nonlinear model of the crane is proposed to compute the inputs approximated with the 4th-order Chevyshev function. The control objective of sum of absolute deviations is minimized, and the optimization is conducted with the simplex algorithm. The inputs and outputs computed from the proposed technique were compared with the results of the previous study to show that they give more stable crane operation than the existing control technique.

Analysis and Operation System of the Information System of the Pilot and Tugs (도·예선 정보체계 분석 및 운영 시스템 개발)

  • Woo-Lee;Sang-Hyun Kim;Seung-Hong Oh;Min-Woo Son;Won-Jung Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.143-148
    • /
    • 2023
  • Currently, pilots and tugs perform the function of minimizing or eliminating property damage by preventing accidents on ships, ports, and human life by supporting docking/unloading and access and departure of ships. The piloting/tuging system is an essential function for the smooth functioning of the port, and it is the system that has the greatest influence on the cargo volume of the port. In this study, we developed an pilot and tugs information system analysis and operating system that can improve port operation efficiency, reduce the waiting time of ships, optimize the operation of ships, and allocate optimal pilots and tugs by utilizing the operation information of the tugbosts.

Retrieval methodology for similar NPP LCO cases based on domain specific NLP

  • No Kyu Seong ;Jae Hee Lee ;Jong Beom Lee;Poong Hyun Seong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.421-431
    • /
    • 2023
  • Nuclear power plants (NPPs) have technical specifications (Tech Specs) to ensure that the equipment and key operating parameters necessary for the safe operation of the power plant are maintained within limiting conditions for operation (LCO) determined by a safety analysis. The LCO of Tech Specs that identify the lowest functional capability of equipment required for safe operation for a facility must be complied for the safe operation of NPP. There have been previous studies to aid in compliance with LCO relevant to rule-based expert systems; however, there is an obvious limit to expert systems for implementing the rules for many situations related to LCO. Therefore, in this study, we present a retrieval methodology for similar LCO cases in determining whether LCO is met or not met. To reflect the natural language processing of NPP features, a domain dictionary was built, and the optimal term frequency-inverse document frequency variant was selected. The retrieval performance was improved by adding a Boolean retrieval model based on terms related to the LCO in addition to the vector space model. The developed domain dictionary and retrieval methodology are expected to be exceedingly useful in determining whether LCO is met.

The optimal operation condition of heat engine (熱機關의 最適 運轉條件)

  • 정평석;김수연
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.971-974
    • /
    • 1987
  • Considering heat transfer and heat loss processes for the heat engine operating between two fixed heat reservoirs, it may be qualitatively explained that the maxima of power output and its efficiency depending upon operating conditions are extreme maxima. Furthermore, it is also found that from an economic point of view the above two extremes are related to extreme minima of plant cost per unit power output and operation cost per unit power output respectively, and the condition of minimum cost per unit power output exists between the extreme minimum conditions of plant cost per unit power output and that of operation cost per unit power output.