• Title/Summary/Keyword: Optimal Operation

Search Result 2,824, Processing Time 0.032 seconds

Optimal Design of a Quick-Acting Hydraulic Fuse using Genetic Algorithm and Complex Method (유전자 알고리즘과 콤플렉스법에 의한 고성능 유압휴즈의 최적 설계)

  • Lee, S.R.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.32-38
    • /
    • 2014
  • The hydraulic fuse, which responds to the suddenly increased flow on rupture of a line and shuts off the fluid flow, would prevent large spillage of liquid. The quick-acting hydraulic fuse, which is mainly composed of a poppet, a seat, and a spring, must be designed to minimize the leaked flow and to prevent high collision speed between the poppet and seat during fuse operation on a line rupture. The optimal design parameters of a quick-acting hydraulic fuse were searched using the genetic algorithm and the complex method that are kinds of constrained direct search methods. The dynamic behavior of a quick-acting hydraulic fuse was researched using computer simulations that applied the obtained optimal design parameters.

A Design of On/Off Type Solenoid Actuator for Valve Operation (밸브 구동용 개폐식 솔레노이드 액추에이터의 설계)

  • Sung, B.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.24-32
    • /
    • 2009
  • For a design of on/off solenoid actuator for valve actuating, designer must have the experimental knowledge as well as general electromagnetic formulas to design object. It is possible for theoretical knowledge to do the out-line design, but it is impossible to optimal design without experimental knowledge which only can be achieved through many repeated experiments. In addition, in present on/off type solenoid actuator field, the smaller, lightening, lower consumption power, high response time are effected as the most important design factor. So, experimental knowledge is more needed for optimal design of solenoid actuator. In this study, we derived the governing equations for optimal design of on/off solenoid actuator for valve actuating and developed a design program composed electromagnetic theories and experimental parameter values for inexperienced designers. And we proved the propriety of this program by experiments.

  • PDF

Management System for Improving RAM of Equipment in Container Terminals (컨테이너 터미널 장비의 RAM 향상을 위한 관리 시스템)

  • Yun, Won-Young;Kim, Gui-Rae;Ha, Young-Ju;Son, Bum-Shin;Kim, Hey-Jeong
    • IE interfaces
    • /
    • v.19 no.3
    • /
    • pp.245-254
    • /
    • 2006
  • Equipments in container terminal have a lot of parts, and an equipment breakdown affects the productivity of terminal. In this paper, we develop a maintenance management system for improving reliability, availability and maintainability of equipments in container terminals. The developed system consists of five modules : equipment structure module, equipment operation management module, maintenance control module, spare part control module and data analysis module. The system supports reliability engineers to manage and improve RAM of equipments in container terminals. For example, FMEA, failure state analysis and life distribution parameters estimation are easily or automatically done by the system. This system also provides optimal preventive maintenance intervals by simulation and optimal yearly PM schedules for equipments in container terminal are recommended.

Near-Optimal Algorithm for Group Scheduling in OBS Networks

  • Nhat, Vo Viet Minh;Quoc, Nguyen Hong;Son, Nguyen Hoang
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.888-897
    • /
    • 2015
  • Group scheduling is an operation whereby control packets arriving in a time slot schedule their bursts simultaneously. Normally, those bursts that are of the same wavelength are scheduled on the same channel. In cases where the support of full wavelength converters is available, such scheduling can be performed on multiple channels for those bursts that are of an arbitrary wavelength. This paper presents a new algorithm for group scheduling on multiple channels. In our approach, to reach a near-optimal schedule, a maximum-weight clique needs to be determined; thus, we propose an additional algorithm for this purpose. Analysis and simulation results indicate that an optimal schedule is almost attainable, while the complexity of computation and that of implementation are reduced.

The Workload Distribution Problems in a Class of Flexible Manufacturing Systems

  • Kim, Sung-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.1
    • /
    • pp.65-75
    • /
    • 1989
  • This study complements the previous studies on workload distribution problems in Flexible Manufacturing Systems. Specifically, we consider the problem in two perspectives, the long-range policy and the short and medium-term planning and control. The long-term loading policy focusses on identifying the optimal loading of the system characterized by either balanced loading or unique unbalanced loading for which a steepest ascent method is developed. These results are then applied to study the optimal medium and short-term planning and control problems, for which a truncated dynamic programming method is developed in order to obtain the optimal allocation of the given operation mix of part types to work stations.

  • PDF

The uses of Optimal Power Flow in Competitive Electric Power market (경쟁적 전력시장 하에서의 최적조류계산 응용에 관한 연구)

  • Hur, Dong;Park, Jong-Keun;Kim, Balho H.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.379-387
    • /
    • 2001
  • This paper shows that we can make simple modifications to an existing optimal power flow(OPF) algorithm that minimizes generation costs in order to solve the maximization of social welfare objective of the OPF in a competitive electric power market. We have illustrated the potential for the use of OPF in light of the marked impacts on nodal prices and generation/demand allocation levels among competing suppliers. This paper can provide all market players with the transparent information that ensures sufficient control over producers and consumers in case of economic of secure operation with transmission line outage while maximizing the sum of participants social benefit of participating in the electricity energy market.

  • PDF

The Optimal Preform Design for Automotive Differential Bevel Gear (자동차용 차동 베벨기어의 최적 예비성형체 설계)

  • 김병민;김동환;정구섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. The aspect ratio and chamfer length are considered as design parameters to achieve adequate metal distribution in the finish forging operation. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing the preform shape in metal forming process.

Dynamic Programming Model for Optimal Replacement Policy with Multiple Challengers (다수의 도전장비 존재시 설비의 경제적 수명과 최적 대체결정을 위한 동적 계획모형)

  • Kim, Tae-Hyun;Kim, Sheung-Kown
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.466-475
    • /
    • 1999
  • A backward Dynamic Programming(DP) model for the optimal facility replacement decision problem during a finite planning horizon is presented. Multiple alternative challengers to a current defender are considered. All facilities are assumed to have finite service lives. The objective of the DP model is to maximize the profit over a finite planning horizon. As for the cost elements, purchasing cost, maintenance costs and repair costs as well as salvage value are considered. The time to failure is assumed to follow a weibull distribution and the maximum likelihood estimation of Weibull parameters is used to evaluate the expected cost of repair. To evaluate the revenue, the rate of operation during a specified period is employed. The cash flow component of each challenger can vary independently according to the time of occurrence and the item can be extended easily. The effects of inflation and the time value of money are considered. The algorithm is illustrated with a numerical example. A MATLAB implementation of the model is used to identify the optimal sequence and timing of the replacement.

  • PDF

Design of Three-winding Coupled Inductor for Minimum Current Ripple in Battery Chargers

  • Kang, Taewon;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.195-196
    • /
    • 2015
  • This paper investigates the design of coupled inductor for minimum inductor current ripple in rapid traction battery charger systems. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor which corresponds to a minimum inductor ripple current becomes -0.5, i.e. a complete inverse coupling without leakage inductance, as the steady-state duty ratio operating point approaches 1/3 or 2/3. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the steady-state duty ratio operating point approaches either zero or one. Coupled inductors having optimal coupling factor can minimize the ripple current of inductor and battery current resulting in a reliable and efficient operation of battery chargers.

  • PDF

The Application of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  • Choe, Yeong;Lee, Gyu-Ho;Go, Dae-Cheol;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.562-569
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage then an intermediate stage has to b added the process sequence to avoid failure during the drawing operation and the optimal process design considering for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. From the results of finrte element analysis the optimal value of drawing ratio is obtained which contributes to the more uniform distribution of thickess and the smaller values of the ductile fracture infinal cup.

  • PDF