• 제목/요약/키워드: Optimal Operation

검색결과 2,835건 처리시간 0.032초

집단에너지 사업자간의 열연계 메커니즘 구성에 의한 최적 열연계 산정 알고리즘 개발 (Development of Optimal Thermal Transfer Calculation Algorithm by Composition of Thermal Transfer Mechanism among Integrated Energy Operators)

  • 김용하;김승희;현승연
    • 에너지공학
    • /
    • 제26권4호
    • /
    • pp.57-66
    • /
    • 2017
  • 열은 전력과 같이 이동속도가 빠르지 못하고 전력에 비해 손실이 비교적 크게 발생하므로 전력거래와 같이 한개의 운용센터를 두고 열 연계 시스템을 운용하는 것은 현실성이 없다. 현재 열 연계가 모두 이루어지고 있는 한국지역난방공사의 경우에도 인접한 2~4개 정도의 열병합발전소간에만 열 거래가 이루어지고 있는 실정이다. 따라서 본 논문에서는 열 거래를 위한 통합운용센터를 몇 개의 권역으로 나누어 각 권역마다 권역의 Hub 통합운용발전소를 두고 운용하는 것이 열매체의 특성을 반영하는데 적정하고 타당한 것으로 판단하여 집단에너지 사업자간 열 연계 메커니즘을 제안하였다. 제안된 메커니즘에 최적으로 열 거래를 행할 수 있는 알고리즘을 개발하고 이를 실제 사업자에 적용하여 제안한 알고리즘의 유용성을 검증하였다.

위험도 평가기준을 적용한 저수지 최적운영방안 연구(I) (대청댐을 중심으로) (A Study of Optimal Operation Policy using Risk Evaluation Criteria(I) (for the Daechung Multi-purpose Reservoir))

  • 박명기;김재한;정관수
    • 한국수자원학회논문집
    • /
    • 제35권1호
    • /
    • pp.37-49
    • /
    • 2002
  • 이수목적 수량관리를 위한 보장수량과 수력발전 등을 고려한 최적화 기법은 이상가뭄 또는 특이 수문년을 포함하는 경우에는 적용에 한계가 있다. 이러한 관점에서 Hashimoto 등(1982)에 의해 제안된 물부족에 관련된 3가지 평가기준을 혼합정수계획법을 통해 최적화모형에 반영하기 위한 Moy 등(1986)과 Srinivasan 등(1999)에 의해 제시된 바 있다. 그러나 이들 연구는 용수공급용 단일 저수지에 대해 한정되어 발전을 포함하는 다목적댐에 적용할 수 있는 정식화 연구는 부진한 실정이다. 본 연구에서는 다목적댐의 용수공급 및 수력발전 최적화 문제에 위험도 평가기준을 도입하여 운영평가를 위한 정식화 형태를 개선하였으며, 개선된 모형을 금강수계 대청다목적댐에 적용하여 그 실효성을 평가하였다.

Study on Multi-scale Unit Commitment Optimization in the Wind-Coal Intensive Power System

  • Ye, Xi;Qiao, Ying;Lu, Zongxiang;Min, Yong;Wang, Ningbo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1596-1604
    • /
    • 2013
  • Coordinating operation between large-scale wind power and thermal units in multiple time scale is an important problem to keep power balance, especially for the power grids mainly made up of large coal-fired units. The paper proposes a novel operation mode of multi-scale unit commitment (abbr. UC) that includes mid-term UC and day-ahead UC, which can take full advantage of insufficient flexibility and improve wind power accommodation. First, we introduce the concepts of multi-scale UC and then illustrate the benefits of introducing mid-term UC to the wind-coal intensive grid. The paper then formulates the mid-term UC model, proposes operation performance indices and validates the optimal operation mode by simulation cases. Compared with day-ahead UC only, the multi-scale UC mode could reduce the total generation cost and improve the wind power net benefit by decreasing the coal-fired units' on/off operation. The simulation results also show that the maximum total generation benefit should be pursued rather than the wind power utilization rate in wind-coal intensive system.

단일 범용설비 운영을 위한 (r, Q) 정책 ((r, Q) Policy for Operation of a Multipurpose Facility)

  • 오근태
    • 한국경영과학회지
    • /
    • 제17권3호
    • /
    • pp.27-46
    • /
    • 1992
  • This paper considers an (r, Q) policy for operation of a multipurpose facility. It is assumed that whenever the inventory level falls below r, the model starts to produce the fixed amount of Q. The facility can be utilized for extra production during idle periods, that is, when the inventory level is still greater than r right after a main production operation is terminated or an extra production operation is finished. But, whenever the facility is in operation for an extra production, the operation can not be terminated for the main production even though the inventory level falls below r. In the model, the demand for the product is assumed to arrive according to a compound Poisson process and the processing time required to produce a product is assumed to follow an arbitary distribution. Similarly, the orders for the extra production is assumed to accur in a Poisson process are the extra production processing time is assumed to follow an arbitrary distribution. It is further assumed that unsatisfied demands are backordered and the expected comulative amount of demands is less than that of production during each production period. Under a cost structure which includes a setup/ production cost, a linear holding cost, a linear backorder cost, a linear extra production lost sale cost, and a linear extra production profit, an expression for the expected cost per unit time for a given (r, Q) policy is obtained, and using a convex property of the cost function, a procedure to find the optimal (r, Q) policy is presented.

  • PDF

2회선 송전선로에서 상호임피던스와 고장저항을 고려한 거리계전기의 동작 특성 연구 (A Study on Adaptive Distance Protection of Double-circuit Line with Mutual Impedance and Fault Resistance)

  • 이원석;정창호;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권4호
    • /
    • pp.221-226
    • /
    • 2004
  • Power system has recently used Double-circuit Line and Multi-circuit Line in the industrial development. This has an advantage of system stability and reliability, but the complexity of the system has a disadvantage that makes it difficult to protect the power line. Double-circuit Line has two operation conditions in the Single-circuit operation and Double-circuit operation, so it has mutual impedance. To make it possible for the remaining single-line to operate independently while there is a fault with first line or when maintenance is needed, a trip region for the single-circuit operation should be set in order to set the relay trip region. An optimal trip region for each operation, a different operational conditions for the relay setting should be calculated. In this paper, trip regions of each operation condition have been compared by considering mutual impedance and fault resistance that led to the calculation of fault impedance. Also, as we know that one of the advantages in the distance relay is the back-up protection, we calculated the trip region(Zone-2) in consideration of the mutual impedance.

2회선 송전선로에서 상호임피던스와 고장저항을 고려한 거리계전기의 동작 특성 연구 (A Study on Adaptive Distance Protection of Double-circuit Line with Mutual Impedance and Fault Resistance)

  • 이원석;정창호;김진오
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.221-221
    • /
    • 2004
  • Power system has recently used Double-circuit Line and Multi-circuit Line in the industrial development. This has an advantage of system stability and reliability, but the complexity of the system has a disadvantage that makes it difficult to protect the power line. Double-circuit Line has two operation conditions in the Single-circuit operation and Double-circuit operation, so it has mutual impedance. To make it possible for the remaining single-line to operate independently while there is a fault with first line or when maintenance is needed, a trip region for the single-circuit operation should be set in order to set the relay trip region. An optimal trip region for each operation, a different operational conditions for the relay setting should be calculated. In this paper, trip regions of each operation condition have been compared by considering mutual impedance and fault resistance that led to the calculation of fault impedance. Also, as we know that one of the advantages in the distance relay is the back-up protection, we calculated the trip region(Zone-2) in consideration of the mutual impedance.

Optimal Decomposition of Convex Structuring Elements on a Hexagonal Grid

  • Ohn, Syng-Yup
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권3E호
    • /
    • pp.37-43
    • /
    • 1999
  • In this paper, we present a new technique for the optimal local decomposition of convex structuring elements on a hexagonal grid, which are used as templates for morphological image processing. Each basis structuring element in a local decomposition is a local convex structuring element, which can be contained in hexagonal window centered at the origin. Generally, local decomposition of a structuring element results in great savings in the processing time for computing morphological operations. First, we define a convex structuring element on a hexagonal grid and formulate the necessary and sufficient conditions to decompose a convex structuring element into the set of basis convex structuring elements. Further, a cost function was defined to represent the amount of computation or execution time required for performing dilations on different computing environments and by different implementation methods. Then the decomposition condition and the cost function are applied to find the optimal local decomposition of convex structuring elements, which guarantees the minimal amount of computation for morphological operation. Simulation shows that optimal local decomposition results in great reduction in the amount of computation for morphological operations. Our technique is general and flexible since different cost functions could be used to achieve optimal local decomposition for different computing environments and implementation methods.

  • PDF

Performance Comparison of Optimal Power Flow Algorithms for LMP Calculations of the Full Scale Korean Power System

  • Lee, Sungwoo;Kim, Wook;Kim, Balho H.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.109-117
    • /
    • 2015
  • This paper proposes the comparison results of various optimal power flow algorithms (OPF) to calculate the locational marginal prices (LMP) of the unreduced full scale Korean transmission system. Five different types of optimal power flow models are employed: Full AC OPF, Cubic AC OPF, Quadratic AC OPF, Linear AC OPF and DC OPF. As the results, full AC OPF and cubic AC OPF model provides LMP calculation results very similar to each other while the calculation time of cubic AC OPF model is faster than that of the Full AC OPF. Other simplified OPF models, quadratic AC OPF, linear AC OPF and DC OPF offer erroneous results even though the calculation times are much faster than the Full AC OPF and the Cubic AC OPF. Given the condition that the OPF models sometimes fail to find the optimal solution due to the severe complexity of the Korean transmission power system, the Full AC OPF should be used as the primary OPF model while the Cubic AC OPF can be a promising backup OPF model for the LMP calculations and/or real-time operation.

Security Cost Analysis with Linear Ramp Model using Contingency Constrained Optimal Power Flow

  • Lyu, Jae-kun;Kim, Mun-Kyeom;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.353-359
    • /
    • 2009
  • This paper proposes a novel technique for calculating the security costs that properly includes ramping constraints in the operation of a deregulated power system. The ramping process is modeled by a piecewise linear function with certain assumptions. During this process, a ramping cost is incurred if the permissible limits are exceeded. The optimal production costs of the power producers are calculated with the ramping cost included, considering a time horizon with N-1 contingency cases using contingency constrained optimal power flow (CCOPF), which is solved by the primal-dual interior point method (PDIPM). A contingency analysis is also performed taking into account the severity index of transmission line outages and its sensitivity analysis. The results from an illustrative case study based on the IEEE 30-bus system are analyzed. One attractive feature of the proposed approach is that an optimal solution is more realistic than the conventional approach because it satisfies physical constraints, such as the ramping constraint.

사출성형에서 런너 크기의 최적화를 위한 CAE 적용 (An Application of CAE in the Optimization of Runner Size in Injection Molding)

  • 김준민;류민영
    • 소성∙가공
    • /
    • 제15권5호
    • /
    • pp.347-353
    • /
    • 2006
  • The delivery system such as sprue, runner and gate is a waste of resin in injection molding operation. In this study the reduction of runner size has been investigated using injection molding CAE softwares, Moldflow and Moldex3D, and commercial CFD Softwares, Fluent and Polyflow. To verify the computational results experiment was performed. There were three considerations in deciding optimal runner size in this study: minimum pressure at the gate that makes resin fully filled in the cavity, minimum runner size that compensates shrinkage of resin in the cavity, and frozen layer thickness formed in the runner during injection. Through the computer simulations the optimal runner size that satisfies those three considerations has been decided. Although the computational results among the softwares were slightly different, it was enough to predict the optimal runner size. The previous runner diameter was 8 mm and predicted optimal size was 5 mm. This was verified by injection molding experiment. Thus, the way of CAE application in deciding optimal runner size adapted in this study would be appropriated.