• Title/Summary/Keyword: Optimal Mode Gain

Search Result 41, Processing Time 0.022 seconds

A Decision Support System for an Optimal Transportation Network Planning in the Third Party Logistics

  • Park, Yong-Sung;Choi, Hyung-Rim;Kim, Hyun-Soo;Park, Nam-Kyu;Cho, Jae-Hyung;Gang, Moo-Hong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.240-257
    • /
    • 2006
  • In an effort to gain competitiveness, recently many companies are trying to outsource their logistics activities to the logistics specialists, while concentrating on their core and strategic business area. Because of this trend, the third party logistics comes to the fore, catching people's attention, and expanding its market rapidly. Under these circumstances, the third party logistics companies are making every effort to improve their logistics services and to develop an information system in order to enhance their competitiveness. In particular, among these efforts one of the critical parts is the decision support system for effective transportation network planning. To this end, this study has developed an efficient decision support system for an optimal transportation network planning by comprehensively considering the transportation mode, routing, assignment, and schedule. As a result of this study, the new system enables the expansion of the third party logistics companies' services including the multimodal transportation, not to mention one mode of transportation, and also gets them ready to plan an international transportation network.

  • PDF

Stochastic FMECA Assessment for Optimal RCM of Combustion-Turbine Generating Unit (복합화력발전기의 신뢰도 기반 유지보수를 위한 확률론적 FMECA 평가)

  • Joo, Jae-Myung;Lee, Seung-Hyuk;Shin, Jun-Seok;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.254-259
    • /
    • 2007
  • PM(Preventive Maintenance) can avail the generating unit to reduce cost and gain more profit in a competitive supply-side power market. So, it is necessary to perform reliability analysis on the power systems in which reliability is essential. Thus, to schedule optimal PM planning based on reliability that is defined RCM(Reliability-Centered Maintenance), FMECA(Failure Mode Effects and Criticality Analysis) assessment is very important. Therefore, in this paper, the procedure of FMECA assessment for optimal RCM is proposed by probabilistic approach using real historical failure data of combustion-turbine generators in Korean power systems. The stochastic FMECA is performed based on the effects of probable failure modes of combustion-turbine generating unit.

분포매개정수를 갖는 원자로의 최적제어 2

  • 지창열
    • 전기의세계
    • /
    • v.29 no.4
    • /
    • pp.256-259
    • /
    • 1980
  • A singular pertubation theory is applied to obtain an approximate solution for suboptimal control of nuclear reactors with spatially distributed parameters. The inverse of the neutron velocity is regarded as a small perturbing parameter, and the model, adopted for simplicity, is a cylindrically symmetrical reactor whose dynamics are described by the one group diffusion equation with one delayed neutron group. The Helmholtz mode expansion is used for the application of the optimal theory for lumped parameter systems to the spatially distributed parameter systems. An asymptotic expansion of the feedback gain matrix is obtained with construction of the boundary layer correction up to the first order.

  • PDF

Active Vibration Control of a Composite Beam Using Piezoelectric Films (압전필름을 이용한 복합재료 외팔보의 능동진동제어)

  • Kim, S.H.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • This paper presents active control methodologies to suppress structural deflections of a composite beam using a distributed piezoelectric-film actuator and sensor. Three types of different controllers are employed to achieve vibration suppression. The controllers are established depending upon the information on the velocity components of the structrue and on the deflection magnitudes as well. They are constant-amplitude controller(CAC), constant-gain mcontroller(CGC), and constant-amplitude-gain controller(CAGC). For the minimization of the residual vibration (chattering in a settled phase), which is the practical shortcoming of the conventional CAC dur to time delay phenomenon of the hardware system, a new control algoritym CAGCis designed by selecting switching constants in an optimal manner with respect to the initial tip deflection and the applied voltage. The experimental investigations of the transient and forced vibration control for the first vibrational mode are undertaken in order to compare the suppression efficiency of each control algorithm. Moreover, simultaneous controllability of various vibrational modes through the proposed scheme is also experimentally verified by pressenting both the transfer function and the phase.

  • PDF

Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing (공기포일 자기 하이브리드 베어링으로 지지되는 연성 축의 휨 모드 진동 제어)

  • Jeong, Se-Na;Ahn, Hyeong-Joon;Kim, Seung-Jong;Lee, Yong-Bok
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2011
  • Hybrid air-foil magnetic bearing integrates two oil free bearing technologies synergetically to adopt the strengths of two bearings with minimizing their weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing the control gain and the rotor center position of magnetic bearing. The experimental results shows that the hybrid bearing can control the bending mode vibration of the flexible shaft effectively and an optimal performance can be achieved with an appropriate load sharing between the air-foil and the magnetic bearings.

Torque Control of Wind Turbine Using Nonlinear Parameter of Rotor Speed in the Region of Optimal Tip Speed Ratio (최적 주속비 구간에서 로터속도 비선형 파라미터를 이용한 풍력터빈의 토크제어)

  • Lim, Chae-Wook;Kim, Sang-Gyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.30-35
    • /
    • 2012
  • Aerodynamic torque of wind turbine has nonlinear properties. Nonlinearity of aerodynamic torque is very important in wind turbine in the aspect of control. The traditional torque control method using optimal mode gain has been applied in many wind turbines but its response is slower as wind turbine size is larger. In this paper, a torque control method using a nonlinear parameter of rotor speed among nonlinear properties of aerodynamic torque. Simulink model is implemented to obtain the nonlinear parameter of rotor speed and numerical simulations for a 2MW wind turbine are carried out and simulation results for the traditional and proposed torque control methods are compared.

Relaying Protocols and Delay Analysis for Buffer-aided Wireless Powered Cooperative Communication Networks

  • Zhan, Jun;Tang, Xiaohu;Chen, Qingchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3542-3566
    • /
    • 2018
  • In this paper, we investigate a buffer-aided wireless powered cooperative communication network (WPCCN), in which the source and relay harvest the energy from a dedicated power beacon via wireless energy transfer, then the source transmits the data to the destination through the relay. Both the source and relay are equipped with an energy buffer to store the harvested energy in the energy transfer stage. In addition, the relay is equipped with a data buffer and can temporarily store the received information. Considering the buffer-aided WPCCN, we propose two buffer-aided relaying protocols, which named as the buffer-aided harvest-then-transmit (HtT) protocol and the buffer-aided joint mode selection and power allocation (JMSPA) protocol, respectively. For the buffer-aided HtT protocol, the time-averaged achievable rate is obtained in closed form. For the buffer-aided JMSPA protocol, the optimal adaptive mode selection scheme and power allocation scheme, which jointly maximize the time-averaged throughput of system, are obtained by employing the Lyapunov optimization theory. Furthermore, we drive the theoretical bounds on the time-averaged achievable rate and time-averaged delay, then present the throughput-delay tradeoff achieved by the joint JMSPA protocol. Simulation results validate the throughput performance gain of the proposed buffer-aided relaying protocols and verify the theoretical analysis.

Limited Feedback and Scheduling for Coordinated SDMA (협력 공간 분할 다중 접속 기술을 위한 제한된 피드백과 스케줄링)

  • Mun, Cheol;Jung, Chang-Kyoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.648-653
    • /
    • 2011
  • In this paper, coordinated space division multiple access(SDMA) technology is proposed to mitigate inter-cell interference by using partial channel state information in cooperative wireless communications system with limited feedback. Each AT selects an optimal cluster transmission mode and sends it back to a cluster scheduler, and at the cluster scheduler, ATs are scheduled within a AT group with the identical cluster transmission mode, and the optimal transmission mode and the corresponding scheduled ATs are determined to maximize scheduling priority. Also, in order to enhance multiuser diversity gain, an extended transmission feedback method is proposed to feed back multiple preferred cluster transmission modes at each AT. It is shown that the proposed coordinated SDMA scheme outperforms existing non-coordinated SDMA schemes in terms of the average system throughput.

Fast Mode Decision Algorithm for H.264 using Mode Classification (H.264 표준에서 모드 분류를 이용한 고속 모드결정 방법)

  • Kim, Hee-Soon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.88-96
    • /
    • 2007
  • H.264 is a new international video coding standard that can achieve considerably higher coding efficiency than conventional standards. Its coding gain has been achieved by employing advanced video coding methods. Specially, the increased number of macroblock modes and the complex mode decision procedure using the Lagrangian optimization are the main factors for increasing coding efficiency. Although H.264 obtains improved coding efficiency, it is difficult to do an real-time encoding because it considers all coding parameters in the mode decision procedure. In this paper, we propose a fast mode decision algorithm which classifies the macroblock modes in order to determine the optimal mode having low complexity quickly. Simulation results show that the proposed algorithm can reduce the encoding time by 34.95% on average without significant PSNR degradation or bit-rate increment. In addition, in order to show the validity of simulation results, we set up a low boundary condition for coding efficiency and complexity and show that the proposed algorithm satisfies the low boundary condition.

Two-step Scheduling With Reduced Feedback Overhead in Multiuser Relay Systems (다중 사용자 릴레이 시스템에서 감소된 피드백 정보를 이용한 두 단계 스케줄링 기법)

  • Jang, Yong-Up;Shin, Won-Yong;Kim, A-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.511-520
    • /
    • 2011
  • In this paper, we introduce a multiuser (MU) scheduling method for multiuser amplify-and-forward relay systems, which selects both the transmission mode, i.e., either one- or two-hop transmission, and the desired user via two steps. A closed-form expression for the average achievable rate of the proposed scheduling is derived under two transmission modes with MU scheduling, and its asymptotic solution is also analyzed in the limit of large number of mobile stations. Based on the analysis, we perform our two-step scheduling algorithm: the transmission mode selection followed by the user selection that needs partial feedback for instantaneous signal-to-noise ratios (SNRs) to the base station. We also analyze the average SNR condition such that the MU diversity gain is fully exploited. In addition, it is examined how to further reduce a quantity of feedback under certain conditions. The proposed algorithm shows the comparable achievable rate to that of the optimal one using full feedback information, while its required feedback overhead is reduced below half of the optimal one.