• 제목/요약/키워드: Optimal Inclination Angle

검색결과 35건 처리시간 0.031초

전산 유체 역학(CFD)을 이용한 원형 양식 사육 수조 내부 유동장 해석 (Analysis of land-based circular aquaculture tank flow field using computational fluid dynamics (CFD) simulation)

  • 권인영;김태호
    • 수산해양기술연구
    • /
    • 제56권4호
    • /
    • pp.395-406
    • /
    • 2020
  • The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.

여자 세단뛰기 운동수행의 일관성과 속도전환계수에 의한 최적의 국면비 (The Velocity Conversion Coefficient and Consistency for the Optimal Phase Ratio on the Performance of the Women's Triple Jump)

  • 류재균;장재관
    • 한국운동역학회지
    • /
    • 제25권1호
    • /
    • pp.39-47
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the velocity conversion coefficient and invariance for the optimal phase ratio on the performance of the women's triple jump. Methods : Three-dimensional kinematic data were obtained from the three finalists of the women's triple jumper competition at the 2011 Daegu IAAF World Championships. Computer simulations were performed using the biomechanical model of the triple jump to optimize the phase ratio for the longest actual distance for all athletes with altered velocity conversion coefficients. Results : Top elite triple jumpers showed better technical consistency at the phase ratio. Also, no consistent relationship was observed between the loss in horizontal velocity and the gain in vertical velocity across supporting the three phase. In addition, regardless of the magnitude A1, all athletes were optimized with jump-dominated technique. Finally, as the magnitude of A1 increased, the athletes showed better performance. The obtained overall distance jumped showed the longest actual distance when the optimal phase ratio was transferred from hop-dominated to jump-dominated(the step ratio was 30%~31%), and when the optimal phase ratio was transferred from balanced to jump-dominated(the step ratio was 27%~29%). Conclusion : Future studies need to be conducted in order to explore the active landing motion and the inclination angle of the body with the velocity conversion coefficient simultaneously at each supporting phase.

선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I) (Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I))

  • 박주용
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.

Enhancement of the Magnetic Flux in Metglas/PZT-Magnetoelectric Integrated 2D Geomagnetic Device

  • Huong Giang, D.T.;Duc, P.A.;Ngoc, N.T.;Hien, N.T.;Duc, N.H.
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.308-315
    • /
    • 2012
  • Experimental investigations of the magnetization, magnetostriction and magnetoelectric (ME) effects were performed on sandwich - type Metglas/PZT/Metglas laminate composites. The results have been analyzed by taking into account the demagnetization contribution. The study has pointed out that the magnetic flux concentration is strongly improved in piezomagnetic laminates with a narrower width leading to a significant enhancement of the ME effects. The piezomagnetic laminates with the optimal area dimension were integrated to form a 2-D geomagnetic device, which simultaneously can precisely detect the strength as well as inclination of the earth's magnetic field. In this case, a magnetic field resolution of better than $10^{-4}$ Oe and an angle precision of ${\pm}0.1^{\circ}$ were determined. This simple and low-cost geomagnetic-field device is promising for various applications.

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

Behavior and design of steel I-beams with inclined stiffeners

  • Yang, Yang;Lui, Eric M.
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.183-205
    • /
    • 2012
  • This paper presents an investigation of the effect of inclined stiffeners on the load-carrying capacity of simply-supported hot-rolled steel I-beams under various load conditions. The study is carried out using finite element analysis. A series of beams modeled using 3-D solid finite elements with consideration of initial geometric imperfections, residual stresses, and material nonlinearity are analyzed with and without inclined stiffeners to show how the application of inclined stiffeners can offer a noticeable increase in their lateral-torsional buckling (LTB) capacity. The analysis results have shown that the amount of increase in LTB capacity is primarily dependent on the location of the inclined stiffeners and the lateral unsupported length of the beam. The width, thickness and inclination angle of the stiffeners do not have as much an effect on the beam's lateral-torsional buckling capacity when compared to the stiffeners' location and beam length. Once the optimal location for the stiffeners is determined, parametric studies are performed for different beam lengths and load cases and a design equation is developed for the design of such stiffeners. A design example is given to demonstrate how the proposed equation can be used for the design of inclined stiffeners not only to enhance the beam's bearing capacity but its lateral-torsional buckling strength.

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

Operating condition optimization of liquid metal heat pipe using deep learning based genetic algorithm: Heat transfer performance

  • Ik Jae Jin;Dong Hun Lee;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2610-2624
    • /
    • 2024
  • Liquid metal heat pipes play a critical role in various high-temperature applications, with their optimization being pivotal to achieving optimal thermal performance. In this study, a deep learning based genetic algorithm is suggested to optimize the operating conditions of liquid metal heat pipes. The optimization performance was investigated in both single and multi-variable optimization schemes, considering the operating conditions of heat load, inclination angle, and filling ratio. The single-variable optimization indicated reasonable performance for various conditions, reinforcing the potential applicability of the optimization method across a broad spectrum of high-temperature industries. The multi-variable optimization revealed an almost congruent performance level to single-variable optimization, suggesting that the robustness of optimization method is not compromised with additional variables. Furthermore, the generalization performance of the optimization method was investigated by conducting an experimental investigation, proving a similar performance. This study underlines the potential of optimizing the operating condition of heat pipes, with significant consequences in sectors such as high temperature field, thereby offering a pathway to more efficient, cost-effective thermal solutions.

해양 탄성파 탐사에서 슬리브건 배열의 방향 특성 (Directional Characteristics of Sleeve-gun Arrays in Marine Seismic Survey)

  • 유해수;양승진
    • 한국음향학회지
    • /
    • 제15권1호
    • /
    • pp.71-80
    • /
    • 1996
  • 해양조사선 온누리호에 장착되어 있는 슬리브건 배열의 특성을 분석하였으며, 탐사 자료와 비교하였다. 주파수 영역엣 빔폭의 변화는 송이 배열인 경우, 814Hz가지는 $179.5^{\circ}$로 일정하며 814-1631Hz 주파수 범위에서는 급격히 빔폭이 좁아진다. 반면에 길이 및 폭배열인 경우, 고주파수대로 갈수록 빔폭이 좁아지며 이때의 최적 주파수는 69Hz이다. 수직면 방향성에서 주엽은 위상 각도 $0^{\circ}$에서 최대 진폭 0dB를 나타낸다. 부엽이 생성되지 않는 최적주파수 범위는 송이배열인 경우 1631Hz 미만이며, 길이 및 폭배열인 경우 108Hz 미만이다. 따라서 송이배열은 천부 지층의 고분해능 탐사에 적합하며, 길이 및 폭배열은 저주파수대 심부지질구조 탐사에 적합함을 나타낸다. 송이배열을 이용한 탄성파 단면도를 동일 측선에서 폭배열을 이용하여 획득한 탄성파 단면도와 비교하였다.

  • PDF

Dynamic characteristics analysis of CBGSCC bridge with large parameter samples

  • Zhongying He;Yifan Song;Genhui Wang;Penghui Sun
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.237-248
    • /
    • 2024
  • In order to make the dynamic analysis and design of improved composite beam with corrugated steel web (CBGSCC) bridge more efficient and economical, the parametric self-cyclic analysis model (SCAM) was written in Python on Anaconda platform. The SCAM can call ABAQUS finite element software to realize automatic modeling and dynamic analysis. For the CBGSCC bridge, parameters were set according to the general value range of CBGSCC bridge parameters in actual engineering, the SCAM was used to calculate the large sample model generated by parameter coupling, the optimal value range of each parameter was determined, and the sensitivity of the parameters was analyzed. The number of diaphragms effects weakly on the dynamic characteristics. The deck thickness has the greatest influence on frequency, which decreases as the deck thickness increases, and the deck thickness should be 20-25 cm. The vibration frequency increases with the increase of the bottom plate thickness, the web thickness, and the web height, the bottom plate thickness should be 17-23mm, the web thickness should be 13-17 mm, and the web height should be 1.65-1.7 5 m. Web inclination and Skew Angle should not exceed 30°, and the number of diaphragms should be 3-5 pieces. This method can be used as a new method for structural dynamic analysis, and the importance degree and optimal value range of each parameter of CBGSCC bridge can be used as a reference in the design process.