• Title/Summary/Keyword: Optimal Height

Search Result 801, Processing Time 0.023 seconds

A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing (스파이럴 그루브 형상의 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구)

  • 강지훈;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.257-262
    • /
    • 2001
  • A numerical analysis is undertaken to show tile influence of bearing design parameters on tile load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, arid the seal ratio.

  • PDF

Empirical Initial Scantling Equations on Optimal Structural Design of Submarine Pressure Hull

  • Oh, Dohan;Koo, Bonguk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The submarine is an underwater weapon system which covertly attacks the enemy. Pressure hull of a submarine is a main system which has to have a capacity which can improve the survivability (e.g., protection of crews) from the high pressure and air pollution by a leakage of water, a fire caused by outside shock, explosion, and/or operational errors. In addition, pressure hull should keep the functional performance under the harsh environment. In this study, optimal design of submarine pressure hull is dealt with 7 case studies done by analytic method and then each result's adequacy is verified by numerical method such as Finite Element Analysis (FEA). For the structural analysis by FEM, material non-linearity and geometric non-linearity are considered. After FEA, the results by analytic method and numerical method are compared. Weight optimized pressure hull initial scantling methods are suggested such as a ratio with shell thickness, flange width, web height and/or relations with radius, yield strength and design pressure (DP). The suggested initial scantling formulae can reduce the pressure hull weight from 6% and 19%.

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

Determination of the Optimal Handle Position for Cartons through the Evaluation of Youth User's Preferences (청년층 사용자 선호도 평가를 통한 박스손잡이의 최적위치 설정)

  • Jung, In-Ju;Jung, Hwa-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.49-56
    • /
    • 2007
  • Handles on objects are very important to increase the safety and efficiency of manual handling of people who use them. In this study, four different prototype cartons combined with auxiliary handles were designed to determine the optimal handle position of cartons through the evaluation of user preferences. Twenty male students are participated in the experiment. Likert-5 point summated rating method was applied to evaluate the user preferences for provided handles of the carton among upper, middle, and lower position under the four different sizes and materials handling conditions(carrying positions). The results show that the subjects preferred upper part of the handle on the small cartons regardless of the carrying positions while upper and middle parts of the handle on the big cartons for handling above the waist height were preferred. An optimal handle position depending on the different sizes of carton and the different carrying positions were recommended based on the results of evaluation. It is thus recommended that the cartons provide handles on its relevant position depending on the size and materials handling condition to reduce the musculoskeletal stress and in turn to increase the user satisfaction.

Bending Mechanism Analysis and Bending Coupler Optimal Design for Laparoscopic Surgical Instrument (복강경수술기구의 벤딩메커니즘 해석 및 벤딩커플러 최적설계)

  • Hwang, Dal Yeon;Moon, Dae Hoan;Choi, Seung Wook;Won, Jong Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.434-441
    • /
    • 2013
  • Bending motion has been used in the surgical instruments with bending structures and tendon mechanisms. A simplified bending angle amplification ratio between the proximal and distal bending joint was derived in this article. The bending structure of disk and rib in the proximal joint was analyzed based on finite element method with an emphasis on the circumferential uniformity of bending stiffness. Regarding the distal joint, optimal design and sensitivity analysis was done with four design variables of outer and inner diameter, rib height and rib width while maximizing the deformation under the stress distribution below the yield stress. Outer diameter and rib width are most critical to maximum deformation as the outer diameter and inner diameters are so to maximum equivalent stress.

Multi-Objective Optimization of a Dimpled Channel Using NSGA-II (NSGA-II를 통한 딤플채널의 다중목적함수 최적화)

  • Lee, Ki-Don;Samad, Abdus;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

Development of Rotating Cone Type Garlic Clove Separator (II) - Effect by Clearance between Inner and Outer Frustum - (회전 원추형 마늘 쪽분리기 개발에 관한 연구 (II) - 원추 간극의 영향 -)

  • Lee, J.S.;Kim, K.B.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.77-83
    • /
    • 2007
  • The purpose of this study is to find optimal conditions for various outlet clearances of prototype garlic clove separator with a rotating cone in the constant inlet clearance and cone height. Optimal outlet clearance from medium to small size garlics was 25 mm at the $200{\sim}400rpm$. For large garlic, optimal outlet clearances of Namdo and Uiseong garlic were 34 mm and 37 mm, respectively, in the range of $300{\sim}400rpm$. The proportion of garlic separation was over 95% for all quality of garlics. The proportions of damaged garlics at 25 mm and 28 mm outlet clearances were below 5% and below 10%, respectively. Therefore, in order to maintain high performance of garlic separation for the various varieties and qualities, the rotating cone type separator should be designed with cone speed ranges of $200{\sim}400rpm$ and the outlet clearance ranges of $25{\sim}37 mm$. The outlet clearance of the separator should be easily controlled within those ranges.

Shape Optimization of Internally Finned Tube with Helix Angle (나선형 핀이 내부에 부착된 관의 형상최적화)

  • Kim, Yang-Hyun;Ha, Ok-Nam;Lee, Ju-Hee;Park, Kyoung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.500-511
    • /
    • 2007
  • The Optimal solutions of the design variables in internally finned tubes have been obtained for three-dimensional periodically fully developed turbulent flow and heat transfer. For a trapezoidal fin profile, performances of the heat exchanger are determined by considering the heat transfer rate and pressure drop, simultaneously, that are interdependent quantities. Therefore, Pareto frontier sets of a heat exchanger can be acquired by integrating CFD and a multi-objective optimization technique. The optimal values of fin widths $(d_1,\;d_2)$, fin height(h) and helix angle$(\gamma)$ are numerical1y obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.5\sim1.5mm$, $d_2=0.5\sim1.5mm$, $h=0.5\sim1.5mm$, and $\gamma=0\sim20^{\circ}$. For this, a general CFD code and a global genetic algorithm(GA) are used. The Pareto sets of the optimal solutions can be acquired after $30^{th}$ generation.

Optimal Design of Cylinder Configuration for a 1-Stage Two Cylinder $CO_2$ Compressor (1단 2실린더 $CO_2$ 압축기의 실린더 형상 최적 설계)

  • Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.119-124
    • /
    • 2008
  • Recently, focus has been drawn on natural refrigerants due to increasing concern on global warming. As a consequence, CO2 systems such as a heat pump water heater using CO2 as a refrigerant are rapidly growing on the market. Currently, rolling piston rotary compressors are widely used for CO2 heating and/or refrigeration systems. There are several ways of realizing gas compression structure. They are single stage compression with single cylinder, single stage compression with two cylinders, and two stage compression with two cylinders. In this paper, computer simulation program which was validated for a single stage rotary compressor with one cylinder has been extended for a single stage, two cylinder rotary type. Numerical investigation has been made on optimal design for the cylinder configuration using the extended simulation program. For a single stage two cylinder rotary compressor having a displacement volume of 4 cc for each cylinder, compressor efficiency has been found to be maximum when the cylinder radius and height are 31mm and 10mm, respectively.

  • PDF

Research on the Optimal Operating Condition of a Total Heat Exchanger in Solar Air-Conditioning System (태양열 이용 냉난방 공조시스템 중 전열교환기의 최적운전조건에 관한 연구)

  • Kim, K.H.;Choi, K.H.;Kum, J.S.;Kim, B.C.;Kim, D.G.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.55-62
    • /
    • 1999
  • This study was performed to find out the influence of experimental factors on dehumidification performance and furthermore to suggest an optimal combination of factors of a total heat exchanger in a solar air conditioning system. The experimental apparatus was set up in a climate-controlled chamber where the temperature and humidity was maintained constant. In order to find out the contribution ratio of factors on dehumidification performance, the table of orthogonal arrays $L_8(2^7)$ was used. According to the results, the most influential factor on dehumidification performance was the concentration of LiCl(Lithium Chloride) solution. The next influential factors were the temperature of LiCl solution and the air flow rate. The packed layer height, packed material, and flow rate of LiCl solution had no influence on the dehumidification performance under these experimental conditions. Through the three level experiments of $L_{27}(3^{13})$, it was found that the optimal combination was $A_2B_0G_2$(concentration of solution 30 wt%, temperature of solution $15^{\circ}C$, air flow rate $253m^3/h$).

  • PDF