• Title/Summary/Keyword: Optimal Forecasts

Search Result 59, Processing Time 0.026 seconds

Developing an Energy Self-Reliance Model in a Sri Lankan Rural Area (스리랑카 농촌 지역의 에너지 자립화 모델 개발)

  • Donggun Oh;Yong-heack Kang;Boyoung Kim;Chang-yeol Yun;Myeongchan Oh;Hyun-Goo Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.88-94
    • /
    • 2024
  • This study explored the potential and implementation of renewable energy sources in Sri Lanka, focusing on the theoretical potential of solar and wind energy to develop self-reliant energy models. Using advanced climate data from the European Centre for Medium-Range Weather Forecasts and Global Solar/Wind Atlas provided by the World Bank, we assessed the renewable energy potential across Sri Lanka. This study proposes off-grid and minigrid systems as viable solutions for addressing energy poverty in rural regions. Rural villages were classified based on solar and wind resources, via which we proposed four distinct energy self-reliance models: Renewable-Dominant, Solar-Dominant, Wind-Dominant, and Diesel-Dominant. This study evaluates the economic viability of these models considering Sri Lanka's current energy market and technological environment. The outcomes highlight the necessity for employing diversified energy strategies to enhance the efficiency of the national power supply system and maximize the utilization of renewable resources, contributing to Sri Lanka's sustainable development and energy security.

A Model of Four Seasons Mixed Heat Demand Prediction Neural Network for Improving Forecast Rate (예측율 제고를 위한 사계절 혼합형 열수요 예측 신경망 모델)

  • Choi, Seungho;Lee, Jaebok;Kim, Wonho;Hong, Junhee
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.82-93
    • /
    • 2019
  • In this study, a new model is proposed to improve the problem of the decline of predict rate of heat demand on a particular date, such as a public holiday for the conventional heat demand forecasting system. The proposed model was the Four Season Mixed Heat Demand Prediction Neural Network Model, which showed an increase in the forecast rate of heat demand, especially for each type of forecast date (weekday/weekend/holiday). The proposed model was selected through the following process. A model with an even error for each type of forecast date in a particular season is selected to form the entire forecast model. To avoid shortening learning time and excessive learning, after each of the four different models that were structurally simplified were learning and a model that showed optimal prediction error was selected through various combinations. The output of the model is the hourly 24-hour heat demand at the forecast date and the total is the daily total heat demand. These forecasts enable efficient heat supply planning and allow the selection and utilization of output values according to their purpose. For daily heat demand forecasts for the proposed model, the overall MAPE improved from 5.3~6.1% for individual models to 5.2% and the forecast for holiday heat demand greatly improved from 4.9~7.9% to 2.9%. The data in this study utilized 34 months of heat demand data from a specific apartment complex provided by the Korea District Heating Corp. (January 2015 to October 2017).

Value of Ensemble Streamflow Forecasts for Reservoir Operations during the Drawdown Period (이수기 저수지 운영을 위한 앙상블 유량예측의 효용성)

  • Eum, Hyung-Il;Ko, Ick-Hwan;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.187-198
    • /
    • 2006
  • Korea Water Resources Corporation(KOWACO) has developed the Integrated Real-time Water Management System(IRWMS) that calculates monthly optimal ending target storages by using Sampling Stochastic Dynamic Programming(SSDP) with Ensemble Streamflow Prediction(ESP) running on the $1^{st}$ day of each month. This system, however, has a shortcoming: it cannot reflect the hydrolmeteorologic variations in the middle of the month. To overcome this drawback, in this study updated ESP forecasts three times each month by using the observed precipitation series from the $1^{st}$ day of the month to the forecast day and the historical precipitation ensemble for the remaining days. The improved accuracy and its effect on the reservoir operations were quantified as a result. SSDP/ESP21 that reflects within-a-month hydrolmeteorologic states saves $1\;X\;10^6\;m^3$ in water shortage on average than SSDP/ESP01. In addition, the simulation result demonstrated that the effect of ESP accuracy on the reduction of water shortage became more important when the total runoff was low during the drawdown period.

Development of Real-Time Forecasting System of Marine Environmental Information for Ship Routing (항해지원을 위한 해양환경정보 실시간 예보시스템 개발)

  • Hong Keyyong;Shin Seung-Ho;Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A marine environmental information system (MEIS) useful for optimal route planning of ships running in the ocean was developed. Utilizing the simulated marine environmental data produced by the European Center for Medium-Range Weather Forecasts based on global environmental data observed by satellites, the real-time forecast and long-term statistics of marine environments around planned and probable ship routes are provided. The MEIS consists of a land-based data acquisition and analysis system(MEIS-Center) and a onboard information display system(MEIS-Ship) for graphic description of marine information and optimal route planning of ships. Also, it uses of satellite communication system for data transfer. The marine environmental components of winds, waves, air pressures and storms are provided, in which winds are described by speed and direction and waves are expressed in terms of height, direction and period for both of wind waves and swells. The real-time information is characterized by 0.5° resolution, 10 day forecast in 6 hour interval and daily update. The statistic information of monthly average and maximum value expected for a return period is featured by 1.5° resolution and based on 15 year database. The MEIS-Ship include an editing tool for route simulation and the forecasting and statistic information on planned routes can be displayed in graph or table. The MEIS enables for navigators to design an optimal navigational route that minimizes probable risk and operational cost.

  • PDF

Stock Market Forecasting : Comparison between Artificial Neural Networks and Arch Models

  • Merh, Nitin
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • Data mining is the process of searching and analyzing large quantities of data for finding out meaningful patterns and rules. Artificial Neural Network (ANN) is one of the tools of data mining which is becoming very popular in forecasting the future values. Some of the areas where it is used are banking, medicine, retailing and fraud detection. In finance, artificial neural network is used in various disciplines including stock market forecasting. In the stock market time series, due to high volatility, it is very important to choose a model which reads volatility and forecasts the future values considering volatility as one of the major attributes for forecasting. In this paper, an attempt is made to develop two models - one using feed forward back propagation Artificial Neural Network and the other using Autoregressive Conditional Heteroskedasticity (ARCH) technique for forecasting stock market returns. Various parameters which are considered for the design of optimal ANN model development are input and output data normalization, transfer function and neuron/s at input, hidden and output layers, number of hidden layers, values with respect to momentum, learning rate and error tolerance. Simulations have been done using prices of daily close of Sensex. Stock market returns are chosen as input data and output is the forecasted return. Simulations of the Model have been done using MATLAB$^{(R)}$ 6.1.0.450 and EViews 4.1. Convergence and performance of models have been evaluated on the basis of the simulation results. Performance evaluation is done on the basis of the errors calculated between the actual and predicted values.

Classification of Weather Patterns in the East Asia Region using the K-means Clustering Analysis (K-평균 군집분석을 이용한 동아시아 지역 날씨유형 분류)

  • Cho, Young-Jun;Lee, Hyeon-Cheol;Lim, Byunghwan;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.451-461
    • /
    • 2019
  • Medium-range forecast is highly dependent on ensemble forecast data. However, operational weather forecasters have not enough time to digest all of detailed features revealed in ensemble forecast data. To utilize the ensemble data effectively in medium-range forecasting, representative weather patterns in East Asia in this study are defined. The k-means clustering analysis is applied for the objectivity of weather patterns. Input data used daily Mean Sea Level Pressure (MSLP) anomaly of the ECMWF ReAnalysis-Interim (ERA-Interim) during 1981~2010 (30 years) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Using the Explained Variance (EV), the optimal study area is defined by 20~60°N, 100~150°E. The number of clusters defined by Explained Cluster Variance (ECV) is thirty (k = 30). 30 representative weather patterns with their frequencies are summarized. Weather pattern #1 occurred all seasons, but it was about 56% in summer (June~September). The relatively rare occurrence of weather pattern (#30) occurred mainly in winter. Additionally, we investigate the relationship between weather patterns and extreme weather events such as heat wave, cold wave, and heavy rainfall as well as snowfall. The weather patterns associated with heavy rainfall exceeding 110 mm day-1 were #1, #4, and #9 with days (%) of more than 10%. Heavy snowfall events exceeding 24 cm day-1 mainly occurred in weather pattern #28 (4%) and #29 (6%). High and low temperature events (> 34℃ and < -14℃) were associated with weather pattern #1~4 (14~18%) and #28~29 (27~29%), respectively. These results suggest that the classification of various weather patterns will be used as a reference for grouping all ensemble forecast data, which will be useful for the scenario-based medium-range ensemble forecast in the future.

Outbound Air Travel Demand Forecasting Model with Unobserved Regional Characteristics (미관찰 지역 특성을 고려한 내국인 국제선 항공수요 추정 모형)

  • YU, Jeong Whon;CHOI, Jung Yoon
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.141-154
    • /
    • 2018
  • In order to meet the ever-increasing demand for international air travel, several plans are underway to open new airports and expand existing provincial airports. However, existing air demand forecasts have been based on the total air demand in Korea or the air demand among major cities. There is not much forecast of regional air demand considering local characteristics. In this study, the outbound air travel demand in the southeastern region of Korea was analyzed and the fixed-effects model using panel data was proposed as an optimal model that can reflect the inherent characteristics of metropolitan areas which are difficult to observe in reality. The results of model validation show that panel data analysis effectively addresses the spurious regression and unobserved heterogeneity that are difficult to handle in a model using only a few macroeconomic indicators with time series characteristics. Various statistical validation and conformance tests suggest that the fixed-effects model proposed in this study is superior to other econometric models in predicting demand for international demand in the southeastern region.

Naval Vessel Spare Parts Demand Forecasting Using Data Mining (데이터마이닝을 활용한 해군함정 수리부속 수요예측)

  • Yoon, Hyunmin;Kim, Suhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.253-259
    • /
    • 2017
  • Recent development in science and technology has modernized the weapon system of ROKN (Republic Of Korea Navy). Although the cost of purchasing, operating and maintaining the cutting-edge weapon systems has been increased significantly, the national defense expenditure is under a tight budget constraint. In order to maintain the availability of ships with low cost, we need accurate demand forecasts for spare parts. We attempted to find consumption pattern using data mining techniques. First we gathered a large amount of component consumption data through the DELIIS (Defense Logistics Intergrated Information System). Through data collection, we obtained 42 variables such as annual consumption quantity, ASL selection quantity, order-relase ratio. The objective variable is the quantity of spare parts purchased in f-year and MSE (Mean squared error) is used as the predictive power measure. To construct an optimal demand forecasting model, regression tree model, randomforest model, neural network model, and linear regression model were used as data mining techniques. The open software R was used for model construction. The results show that randomforest model is the best value of MSE. The important variables utilized in all models are consumption quantity, ASL selection quantity and order-release rate. The data related to the demand forecast of spare parts in the DELIIS was collected and the demand for the spare parts was estimated by using the data mining technique. Our approach shows improved performance in demand forecasting with higher accuracy then previous work. Also data mining can be used to identify variables that are related to demand forecasting.

MPC-based Two-stage Rolling Power Dispatch Approach for Wind-integrated Power System

  • Zhai, Junyi;Zhou, Ming;Dong, Shengxiao;Li, Gengyin;Ren, Jianwen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.648-658
    • /
    • 2018
  • Regarding the fact that wind power forecast accuracy is gradually improved as time is approaching, this paper proposes a two-stage rolling dispatch approach based on model predictive control (MPC), which contains an intra-day rolling optimal scheme and a real-time rolling base point tracing scheme. The scheduled output of the intra-day rolling scheme is set as the reference output, and the real-time rolling scheme is based on MPC which includes the leading rolling optimization and lagging feedback correction strategy. On the basis of the latest measured thermal unit output feedback, the closed-loop optimization is formed to correct the power deviation timely, making the unit output smoother, thus reducing the costs of power adjustment and promoting wind power accommodation. We adopt chance constraint to describe forecasts uncertainty. Then for reflecting the increasing prediction precision as well as the power dispatcher's rising expected satisfaction degree with reliable system operation, we set the confidence level of reserve constraints at different timescales as the incremental vector. The expectation of up/down reserve shortage is proposed to assess the adequacy of the upward/downward reserve. The studies executed on the modified IEEE RTS system demonstrate the effectiveness of the proposed approach.

A Study on Database System for Hostorical Booking of Korean Railroad (한국철도의 예약실적 데이터베이스 시스템에 관한 연구)

  • Oh, Seog-Moon;Hwang, Jong-Gyu;Hyeon, Seung-Ho;Kim, Yong-Gyu;Lee, Jong-Woo;Kim, Young-Hoon;Hong, Soon-Heum;Park, Jong-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.371-374
    • /
    • 1998
  • The construction of the transportation history database system is to serve the scheduling and seat inventory controling. Recently, lots of countries have been faced with the advance era because of the new railway transportation system, like the high speed railway and/or magnetic levitation vehicle system. This can be reasonably translated as those of operators are willing to provide the more various and high quality schedule to the customer. Those operators these ideas make possible to forecast that scheduling process is going to be complicated more and more. The seat inventory control, so to speak Yield Management System(YMS), goes a long way to improve the total passenger revenue at the railway business. The YMS forecasts the number of the last reservation value(DCP# END) and recommends the optimal values on the seat sales. The history database system contains infra-data(ie, train, seat, sales) that will be the foundation of scheduling and seat inventory control application programs. The development of the application programs are reserved to the next step. The database system is installed on the pc platform (IBM compatible), using the DB2(RDBMS). And at next step, the platform and DBMS will be considered whether they can meet the users' requirement or not.

  • PDF