• Title/Summary/Keyword: Optimal Forecasts

Search Result 62, Processing Time 0.025 seconds

A selection of optimal method for bias-correction in Global Seasonal Forecast System version 5 (GloSea5) (전지구 계절예측시스템 GloSea5의 최적 편의보정기법 선정)

  • Son, Chanyoung;Song, Junghyun;Kim, Sejin;Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.551-562
    • /
    • 2017
  • In order to utilize 6-month precipitation forecasts (6 months at maximum) of Global Seasonal Forecast System version 5 (GloSea5), which is being provided by KMA (Korea Meteorological Administration) since 2014, for water resources management as well as other applications, it is needed to correct the forecast model's quantitative bias against observations. This study evaluated applicability of bias-correction skill in GloSea5 and selected an optimal method among 11 techniques that include probabilistic distribution type based, parametric, and non-parametric bias-correction to fix GloSea5's bias in precipitation forecasts. Non-parametric bias-correction provided the most similar results with observed data compared to other techniques in hindcast for the past events, yet relatively generated some discrepancies in forecast. On the contrary, parametric bias-correction produced the most reliable results in both hindcast and forecast periods. The results of this study are expected to be applicable to various applications using seasonal forecast model such as water resources operation and management, hydropower, agriculture, etc.

Improvement of the Ensemble Streamflow Prediction System Using Optimal Linear Correction (최적선형보정을 이용한 앙상블 유량예측 시스템의 개선)

  • Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.471-483
    • /
    • 2005
  • A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.

Estimation of Optimal Training Period for the Deep-Learning LSTM Model to Forecast CMIP5-based Streamflow (CMIP5 기반 하천유량 예측을 위한 딥러닝 LSTM 모형의 최적 학습기간 산정)

  • Chun, Beom-Seok;Lee, Tae-Hwa;Kim, Sang-Woo;Lim, Kyoung-Jae;Jung, Young-Hun;Do, Jong-Won;Shin, Yong-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • In this study, we suggested the optimal training period for predicting the streamflow using the LSTM (Long Short-Term Memory) model based on the deep learning and CMIP5 (The fifth phase of the Couple Model Intercomparison Project) future climate scenarios. To validate the model performance of LSTM, the Jinan-gun (Seongsan-ri) site was selected in this study. We comfirmed that the LSTM-based streamflow was highly comparable to the measurements during the calibration (2000 to 2002/2014 to 2015) and validation (2003 to 2005/2016 to 2017) periods. Additionally, we compared the LSTM-based streamflow to the SWAT-based output during the calibration (2000~2015) and validation (2016~2019) periods. The results supported that the LSTM model also performed well in simulating streamflow during the long-term period, although small uncertainties exist. Then the SWAT-based daily streamflow was forecasted using the CMIP5 climate scenario forcing data in 2011~2100. We tested and determined the optimal training period for the LSTM model by comparing the LSTM-/SWAT-based streamflow with various scenarios. Note that the SWAT-based streamflow values were assumed as the observation because of no measurements in future (2011~2100). Our results showed that the LSTM-based streamflow was similar to the SWAT-based streamflow when the training data over the 30 years were used. These findings indicated that training periods more than 30 years were required to obtain LSTM-based reliable streamflow forecasts using climate change scenarios.

Development of the Korea Ocean Prediction System

  • Suk, Moon-Sik;Chang, Kyung-Il;Nam, Soo-Yong;Park, Sung-Hyea
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.181-188
    • /
    • 2001
  • We describe here the Korea ocean prediction system that closely resembles operational numerical weather prediction systems. This prediction system will be served for real-time forecasts. The core of the system is a three-dimensional primitive equation numerical circulation model, based on ${\sigma}$-coordinate. Remotely sensed multi-channel sea surface temperature (MCSST) is imposed at the surface. Residual subsurface temperature is assimilated through the relationship between vertical temperature structure function and residual of sea surface height (RSSH) using an optimal interpolation scheme. A unified grid system, named as [K-E-Y], that covers the entire seas around Korea is used. We present and compare hindcasting results during 1990-1999 from a model forced by MCSST without incorporating RSSH data assimilation and the one with both MCSST and RSSH assimilated. The data assimilation is applied only in the East Sea, hence the comparison focuses principally on the mesoscale features prevalent in the East Sea. It is shown that the model with the data assimilation exhibits considerable skill in simulating both the permanent and transient mesoscale features in the East Sea.

  • PDF

Real-time Recursive Forecasting Model of Stochastic Rainfall-Runoff Relationship (추계학적 강우-유출관계의 실시간 순환예측모형)

  • 박상우;남선우
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.109-119
    • /
    • 1992
  • The purpose of this study is to develop real-time streamflow forecasting models in order to manage effectively the flood warning system and water resources during the storm. The stochastic system models of the rainfall-runoff process using in this study are constituted and applied the Recursive Least Square and the Instrumental Variable-Approximate Maximum Likelihood algorithm which can estimate recursively the optimal parameters of the model. Also, in order to improve the performance of streamflow forecasting, initial values of the model parameter and covariance matrix of parameter estimate errors were evaluated by using the observed historical data of the hourly rainfall-runoff, and the accuracy and applicability of the models developed in this study were examined by the analysis of the I-step ahead streamflow forecasts.

  • PDF

Optimal Reservoir Operation Models for Paddy Rice Irrigation with Weather Forecasts (I) - Generating Daily Rainfall and Evaporation Data- (기상예보를 고려한 관개용 저수지의 최적 조작 모형(I) -일강수량.일증발량 자료발생-)

  • 김병진;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.63-72
    • /
    • 1994
  • The objective of the study is to develop weather generators for daily rainfall and small pan evaporation and to test the applicability with recorded data. Daily rainfall forecasting model(DRFM) was developed that uses a first order Markov chain to describe rainfall seque- nces and applies an incomplete Gamma function to predict the amount of precipitation. Daily evaporation forecasting model(DEFM) that adopts a normal distribution function to generate the evaporation for dry and wet days was also formulated. DRFM and DEFM were tested with twenty year weather data from eleven stations using Chi-square and Kolmogorov and Smirnov goodness of fit tests. The test results showed that the generated sequences of rainfall occurrence, amount of rainfall, and pan evaporation were statistically fit to recorded data from eleven, seven, and seven stations at the 5% level of significance. Generated rainfall data from DRFM were very close in frequency distri- bution patterns to records for stations all over the country. Pan evaporation for rainy days generated were less accurate than that for dry days. And the proposed models may be used as tools to provide many mathematical models with long-term daily rainfall and small pan evaporation data. An example is an irrigation scheduling model, which will be further detailed in the paper.

  • PDF

Development of the Transportation History DB System for the Scheduling and Seat Inventory Control (열차계획 및 열차좌석관리를 위한 수송실적 데이터베이스 시스템 개발)

  • 오석문;김영훈;황종규;김용규;이종우
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.23-30
    • /
    • 1998
  • The construction of the transportation history database system is to serve the scheduling and seat inventory controling. Recently, lots of countries have been faced with the advance era because of the new railway transportation system, like the high speed railway and/or magnetic levitation vehicle system. This can be reasonably translated as those of operators are willing to provide the more various and high quality schedule to the customer. Those operators' these ideas make possible to forecast that scheduling process is going to be complicated more and more The seat inventory control, so to speak Yield Management System(YMS), goes a long way to improve the total passenger revenue at the railway business. The YMS forecasts the number of the last reservation value(DCP# END) and recommends the optimal values on the seat sales. The history database system contains infra-data(ie, train, seat, sales) that will be the foundation of scheduling and seat inventory control application programs. The development of the application programs are reserved to the next step. The database system is installed on the pc platform(IBM compatible), using the DB2(RDBMS). And at next step, the platform and DBMS will be considered whether they can meet the users' requirement or not.

  • PDF

Technical Trends of Computing Infrastructure for Agent Based Modeling & Simulation (에이전트 기반 모델링 및 시뮬레이션을 위한 컴퓨팅 인프라 기술 동향)

  • Jung, Y.W.;Son, S.;Oh, B.T.;Lee, G.C.;Bae, S.J.;Kim, B.S.;Kang, D.J.;Jung, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.111-120
    • /
    • 2018
  • Agent-based modeling and simulation (ABMS) is a computational method for analyzing research targets through observations of agent-to-agent interactions, and can be applied to multidimensional policy experiments in various fields of social sciences to support policy and decision making. Recently, according to increasing complexity of society and the rapid growth of collected data, the need for high-speed processing is considered to be more important in this field. For this reason, in the ABMS research field, a scalable and large-scale computing infrastructure is becoming an essential element, and cloud computing has been considered a promising infrastructure of ABMS. This paper surveys the technology trends of ABMS tools, cloud computing-based modeling, and simulation studies, and forecasts the use of cloud-computing infrastructure for future modeling and simulation tools. Although fundamental studies are underway to apply and operate cloud computing in the areas of modeling and simulation, new and additional studies are required to devise an optimal cloud computing infrastructure to satisfy the needs of large-scale ABMS.

A Study on Predicting the demand for Public Shared Bikes using linear Regression

  • HAN, Dong Hun;JUNG, Sang Woo
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • As the need for eco-friendly transportation increases due to the deepening climate crisis, many local governments in Korea are introducing shared bicycles. Due to anxiety about public transportation after COVID-19, bicycles have firmly established themselves as the axis of daily transportation. The use of shared bicycles is spread, and the demand for bicycles is increasing by rental offices, but there are operational and management difficulties because the demand is managed under a limited budget. And unfortunately, user behavior results in a spatial imbalance of the bike inventory over time. So, in order to easily operate the maintenance of shared bicycles in Seoul, bicycles should be prepared in large quantities at a time of high demand and withdrawn at a low time. Therefore, in this study, by using machine learning, the linear regression algorithm and MS Azure ML are used to predict and analyze when demand is high. As a result of the analysis, the demand for bicycles in 2018 is on the rise compared to 2017, and the demand is lower in winter than in spring, summer, and fall. It can be judged that this linear regression-based prediction can reduce maintenance and management costs in a shared society and increase user convenience. In a further study, we will focus on shared bike routes by using GPS tracking systems. Through the data found, the route used by most people will be analyzed to derive the optimal route when installing a bicycle-only road.

Strategy for Providing Optimal VMS Travel Time Information Using Bi-Level Programming (Bi-Level 프로그래밍 기법을 이용한 최적의 VMS 통행시간 정보제공 전략)

  • Baik, Nam Cheol;Kim, Byung Kwan;Lee, Sang Hyup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.559-564
    • /
    • 2006
  • The purpose of this study is to minimize negative effect of VMS travel time information service by sensitivity analysis, which forecasts the change in link traffic volume. As a result, strategies for providing travel information that can change driving patterns for minimizing travel time were found. The framework for analysis is recently expanded with the application of game theory. According to the experiment, the algorithm generated for travel time information service reduces total travel time and yields travel patterns that is very close to the system optimization. Also, this study found that the route the travel time service information is provided about could play the important role.