• Title/Summary/Keyword: Optimal Force

Search Result 1,277, Processing Time 0.031 seconds

Force Manipulability Analysis of Multi-Legged Walking Robot (다족 보행로봇의 동적 조작성 해석)

  • 조복기;이지홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

Sizing, geometry and topology optimization of trusses using force method and supervised charged system search

  • Kaveh, A.;Ahmadi, B.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.365-382
    • /
    • 2014
  • In this article, the force method and Charged System Search (CSS) algorithm are used for the analysis and optimal design of truss structures. The CSS algorithm is employed as the optimization tool and the force method is utilized for analysis. In this paper in addition to member's cross sections, redundant forces, geometry and topology variables are considered as the optimization variables. Minimum complementary energy principle is used directly to analyze the structure. In the presented method, redundant forces are calculated by the CSS in order to minimize the energy function. Combination of the CSS and force method leads to an efficient algorithm in comparison to some of the optimization algorithms.

Effect of Change of Grinding Force on Geometric Error (연삭력 변화량이 공작물의 형상오차에 미치는 영향)

  • Chi, Long-Zhn;Lee, Sang-Jin;Park, Hoo-Myung;Oh, Sang-Lok;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • A real depth of cut in deformed zone has larger than an ideal depth of cut. So the heat generated during grinding operation makes the deformation of a workpiece surface as convex farm. Consequently the workpiece surface remains a geometric error as concave form after cooling In this study, the grinding force and the geometric error were examined in surface grinding. Through magnitude and mode of geometric error were evaluated according to grinding conditions, an optimal grinding condition was proposed to minimize the geometric error In addition, the relationship between the geometric error and the grinding force was examined. Due to least square regression, It was possible to predict the geometric error by using the grinding force.

  • PDF

Design and fabrication of micro force sensor using MEMS fabrication technology (MEMS 제작기술을 이용한 미세 힘센서 설계 및 제작)

  • 김종호;조운기;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.497-502
    • /
    • 2002
  • This paper describes a design methodology of a tri-axial silicon-based farce sensor with square membrane by using micromachining technology (MEMS). The sensor has a maximum farce range of 5 N and a minimum force range of 0.1N in the three-axis directions. A simple beam theory was adopted to design the shape of the micro-force sensor. Also the optimal positions of piezoresistors were determined by the strain distribution obtained from the commercial finite element analysis program, ANSYS. The Wheatstone bridge circuits were designed to consider the sensitivity of the force sensor and its temperature compensation. Finally the process for microfabrication was designed using micromachining technology.

  • PDF

Geometric Error Prediction of Ground Surface by Using Grinding Force (연삭력을 이용한 공작물의 형상오차 예측)

  • 하만경;지용주;곽재섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 2004
  • Because a generated heat during grinding operation makes a serious deformation on a ground surface as a convex form, a real depth of cut in deformed zone has larger than an ideal depth of cut. Consequently, the ground surface has a geometric error as a concave form after cooling the workpiece. In this study, the force and the geometric error of surface grinding were examined. From evaluating magnitude and mode of the geometric error according to grinding conditions, an optimal grinding condition was proposed to minimize the geometric error. In addiction the relationship between the geometric error and the grinding force was found out. Due to least square regression it was able to predict the geometric error by using the grinding force.

Shape Design of Slotless Type PMLSM for Improving Thrust Density (Slotless 영구자석형 선형 동기전동기의 고추력화를 위한 형상 설계)

  • 김용철;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.320-326
    • /
    • 2003
  • Slotless Permanent Magnet Linear Synchronous Motor (PMLSM) has good control ability but thrust density is low. So, this paper proposes inserted core type of slotless PMLSM to improve its thrust density. Inserting the core between windings of each phase, detent force is generated by the difference of magnetic resistance in an air gap. To minimize detent force, this paper applies the neural network to inserted core type of slotless PMLSM. The, Magnetic pole ratio, the width of the inserted core and the width of the coil are selected as a design parameter to minimize detent force. In comparison with inserted core type one, thrust ripple greatly decreases by minimizing detent force and also thrust increases in this optimal model.

A Study on the Experiments and Characteristics Analysis of the Bellows Type Rodless Cylinder (벨로우즈형 로드리스 실린더 특성해석 및 실험에 관한 연구)

  • Kim, Dong-Soo;Kim, Sung-Jong;Bae, Sang-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.973-977
    • /
    • 2004
  • A pneumatic cylinder used to sliding seal which seal the element one to another in relative motion. It is difficult to accuracy control because of adhesion phenomenon. To confirm this phenomenon, it is carried to friction force test and analysis for bellows type rodless cylinder. In the rodless cylinder of this type, friction force test is very important. Through the theoretical analysis of shock absorber obtained the optimal design of bellows type rodless cylinder. As the result of the friction force test, LM Guide type is suitable for work under low friction force.

  • PDF

Study on Fine-shaft in Turning for Thrust Force Control (배분력 제어를 통한 미세축 선삭가공에 관한 연구)

  • Kim, Gue-Tae;Kim, Won-Il;Kim, Sang-Hyun;Kim, Kyeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.88-93
    • /
    • 2012
  • In this study, Machining fine shaft was examined by Lathe. method is proposed to control the thrust force to 0. through relationship between the cutting depth and the thrust force in turning, fine-shaft of less than 0.1mm diameter in turning is confirmed experimentally. also we propose practical expression to control thrust force in turning Through to change the approach angle, optimal tool design would be possible in turning.

A Study on Three Degree-of-Freedom Fine Positioning Device Based on Electromagnetic Force (전자기력을 이용한 3 자유도 정밀 위치결정기구에 관한 연구)

  • 이기하;최기봉;박기환;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.199-207
    • /
    • 1998
  • This paper presents the design and the control of three degree-of-freedom(DOF) fine positioning device based on an electro-magnetic force. The device is designed by use of a magnetic circuit theory and it is capable of fine motion due to the electro-magnetic force. The device consists of permanent magnets, yokes and coils. The magnetic fluxes generated from the permanent magnets constitute magnetic paths through steel, whereas the coils are arranged into the gap between two surfaces of the yokes. Therefore, by supplying current to the coils, the coils are capable of some motions due to Lorentz forces. For the optimal design of the actuating system, the system parameters are defined and investigated under the given constraints. From the system modeling in small displacement, three decoupled equations of motion are obtained. To get better performance of the system, a PID controller is implemented. Experimental results are presented in terms of time response and accuracy.

  • PDF

3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control (원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어)

  • Kang, Dong Hee;Kim, Na Kyong;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.