• Title/Summary/Keyword: Optimal Design Parameters

Search Result 1,819, Processing Time 0.031 seconds

Reliability-Based Design Optimization of a Superconducting Magnetic Energy Storage System (SMES) Utilizing Reliability Index Approach

  • Jeung, Gi-Woo;Kim, Dong-Wook;Sung, Young-Hwa;Kim, Heung-Geun;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • 제17권1호
    • /
    • pp.46-50
    • /
    • 2012
  • A reliability-based optimization method for electromagnetic design is presented to take uncertainties of design parameters into account. The method can provide an optimal design satisfying a specified confidence level in the presence of uncertain parameters. To achieve the goal, the reliability index approach based on the firstorder reliability method is adopted to deal with probabilistic constraint functions and a double-loop optimization algorithm is implemented to obtain an optimum. The proposed method is applied to the TEAM Workshop Problem 22 and its accuracy and efficiency is verified with reference of Monte Carlo simulation results.

Optimal Design of Low-Speed Secondary-Sheet Single-Sided Linear Induction Motor

  • Shiri, Abbas;Shoulaie, Abbas
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.581-587
    • /
    • 2013
  • Among different linear motors, single-sided linear induction motors have been widely used in industry due to their simplicity and low construction cost. However, these types of motors suffer from low efficiency and power factor. In this paper, an effective procedure is proposed to design single-sided linear induction motors. The designed motor is simulated in MATLAB software in order to investigate the effect of design parameters on the performance of the machine. Regarding the obtained results, the Genetic Algorithm is employed to optimize the design considering product of efficiency and power factor as objective function. The results show significant improvement of the performance. Finally, experimental results and 2D finite element method is used to validate the model parameters and the optimization results.

반응표면법과 유한요소법을 이용한 단상 스위치드 릴럭턴스 전동기의 최적 설계 (Single Phase Switched Reluctance Motor Optimum Design Using Response Surface Methodology and Finite Element Method)

  • 임승빈;최재학;박재범;손영규;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.596-607
    • /
    • 2006
  • This paper presents Single Phase Switched Reluctance Motor (SPSRM) optimum design for vacuum cleaners using Response Surface Methodology (RSM) to determine geometric parameters, and the 2-D Finite Element Method (FEM) has been coupled with the circuit equations of the driving converter. Additionally, an optimum process for SPSRM has been proposed and peformed with geometric and electric parameters thereby influencing the inductance variation and effective torque generation as design variables. SPSRM performances have also been analyzed to determine an optimal design model for maximized efficiency at high power factor. In order to confirm the propriety of the Finite Element Method and motor performance calculation, simulation waveform and experiment waveform for motor voltage and current were compared.

Economic Design of a Moving Average Control Chart with Multiple Assignable Causes when Two Failures Occur

  • Cben, Yun-Shiow;Yu, Fong-Jung
    • International Journal of Quality Innovation
    • /
    • 제2권1호
    • /
    • pp.69-86
    • /
    • 2001
  • The economic design of control charts has been researched for over four decades since Duncan proposed the concept in 1956. Few studies, however, have focused attention on the economic design of a moving average (MA) control chart. An MA control chart is more effective than the Shewhart chart in detecting small process shifts [9]. This paper provides an economic model for determining the optimal parameters of an MA control chart with multiple assignable causes and two failures in the production process. These parameters consist of the sample size, the spread of the control limit and the sampling interval. A numerical example is shown and the sensitivity analysis shows that the magnitude of shift, rate of occurrence of assignable causes and increasing cost when the process is out of control have a more significant effect on the loss cost, meaning that one should more carefully estimate these values when conducting an economic analysis.

  • PDF

Hull form design for the fore-body of medium-sized passenger ship with gooseneck bulb

  • Yu, Jin-Won;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권5호
    • /
    • pp.577-587
    • /
    • 2017
  • The recent IMO MEPC regulation on EEDI, EEOI and increased fuel cost has worsened the financial condition of the small and medium sized passenger ferry companies, and it is situated to acquire the economic ships with a pretty high resistance performance. The purpose of this research is to develop a design method on the efficient gooseneck bulb for the middle-sized passenger ferry operated in the Far East Asian seas. The hull forms are designed by varying the gooseneck bulb parameters to find the changes on the resistance performance according to the shape of bulb. The numerical series tests are made to derive the regression equation for estimating the resistance through analyzing the data statistically. This equation is set as an objective function, and then using the optimization algorithm searches for the optimal combination of the design variables. After a hull form is designed corresponding to optimized parameters.

다구찌법을 이용한 ER 댐퍼의 강건 설계 (Robust Design of an ER Damper using Taguchi Method)

  • 윤영민;배광식;김재환;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.157-162
    • /
    • 2003
  • This Paper presents a robust design of an Electrorheological(ER) damper using Taguchi method. Taguchi method is a robust design method that determines control parameters in the presence of noise effect. Electrode length, electrode gap, base oil viscosity and the weight ratio of ER particles are chosen for the control parameters and the temperature is considered to be a noise factor. The sensitivity of each factor with signal-to-noise(S/N) ratio and analysis of variance are investigated. The analysis results show that the electrode length and base oil viscosity of the ER fluid mostly affect the damping force in the absence of electric field. On the other hand, when the voltage is applied to the ER damper, the electrode length and the weight ratio of ER fluid exhibit significant effect. Based on the Taguchi method, an optimal configuration was designed and the robustness of the designed ER damper was validated by comparing the analysis and experimental results.

  • PDF

유전 알고리즘과 3차원 공간고조파법을 이용한 Soltless Type PMLSM의 최적설계에 관한 연구 (A Study on the Optimum Design of Soltless Type PMLSM Using Genetic Algorithm and 3-D Space Harmonic Method)

  • 이동엽;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권8호
    • /
    • pp.463-468
    • /
    • 2004
  • This paper was applied space harmonic method as a characteristic analysis technique for slotless PMLSM. There is advantages of active response to the change of design parameters as well as reduction of the calculation time. The method can be overcome disadvantages of finite element analysis that needs long times calculation, repetitions of pre and post-process. In this paper, 3D-space harmonic method was applied to consider the precise description of end turn coil shape and the changes of characteristic according to changes of length of z-axis direction. The thrust of optimal design was performed using genetic algorithm to enhance the thrust which is the disadvantage of slotless type PMLSM. For design parameters, width of permanent magnet, width of coil, width of coil inner and lengths of z-axis direction were selected. For objective functions. thrust per weight. thrust per volume. multi-objective function was selected.

신경회로망과 유한요소법을 이용한 편측식 선형유도전동기의 최적설계에 관한 연구 (Optimum Design of Single-Sided Linear Induction Motor Using the Neural Networks and Finite Element Method)

  • 임달호;박승찬;박두진;장석명;이철직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1004-1006
    • /
    • 1993
  • A new method for the optimal design of a single-sided linear induction motor(SLIM) is presented. The method utilizes the neural networks and finite element method for optimizing the design parameters of SLIM. The finite element analysis is used to produce a variety of neural networks training data and the neural networks is used for optimizing the design parameters by sequential unconstrained minimization technique(SUMT). As a result, it is known that the novel method is very efficient and accurate as an optimization technique.

  • PDF

Taguchi 방법을 이용한 순수 유압식 브레이커의 성능 최적화 (Performance Optimization of a Fully Hydraulic Breaker using Taguchi Method)

  • 곽광순;장효환
    • 유공압시스템학회논문집
    • /
    • 제5권3호
    • /
    • pp.1-8
    • /
    • 2008
  • The optimal design of a large-size fully hydraulic breaker is studied in this paper. Mathematical modeling of the breaker is established and verified by experiments. Through sensitivity analysis, the key design parameters of the breaker are selected, which mostly affect the performance of the breaker. Taguchi method is used to optimize the key design parameters in order to maximize the output power through simulation using AMESim. As a result, the impact energy is increased by 18.9% and the output power is increased by 12.4% compared with the current design. The pressure pulsation in the supply line is also reduced by the optimization.

  • PDF

Design Structure Matrix: A Model Proposal and Implementation on Harbor and Building Design Project

  • Akram, Salman;Kim, Jeonghwan;Pi, Seungwoo;Seo, Jongwon
    • 한국건설관리학회논문집
    • /
    • 제14권1호
    • /
    • pp.144-152
    • /
    • 2013
  • Design is an iterative, generative, and multidisciplinary process by its nature. Iteration occurs often in most of the engineering design and development projects including construction. Design iterations cause rework, and extra efforts are required to get the optimal sequence and to manage the projects. Contrary to simple design, isolation of the generative iterations in complex design systems is very difficult, but reduction in overall iterations is possible. Design depends upon the information flow within domain and also among various design disciplines and organizations. Therefore, it is suggested that managers should be aware about the crucial iterations causing rework and optimal sequence as well. In this way, managers can handle design parameters related to such iterations pro-actively. There are a number of techniques to reduce iterations for various kinds of engineering designs. In this paper, parameter based Design Structure Matrix (DSM) is chosen. To create this DSM, a survey was performed and then partitioned using a model. This paper provides an easy approach to those companies involved in or intend to be involved in "design and build projects".