• Title/Summary/Keyword: Optimal Design Parameters

Search Result 1,815, Processing Time 0.032 seconds

An analysis of the thermal characteristics for optimal design and operation of the radiant heating panels (복사난방패널의 설계 및 운전을 위한 열적 특성 분석)

  • Lee, T.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.180-188
    • /
    • 1997
  • The theoretical analysis and experiment with simulator were performed to obtain the temperature distributions in radiant heating panel and heat supply from hot water to heating space for the purpose of the development of comfortable living space from a point of view of the improvement of air quality and the enhancement of system efficiency. The relations of various parameters, such as pipe pitch, room temperature as well as flow rate and temperature of hot water and so on, with the rate of heat supplied, mean temperature and maximum temperature difference at panel surface were discussed. The effects of these parameters were also verified on the thermal performance of heating panel using the relations which could be used for the optimal design and operation of the radiant heating panel.

  • PDF

Resistive Hts-Fcl Emtdc Modeling By Using Probabilistic Design Methodology

  • Yoon, Jae-Young;Kim, Jong-Yul;Lee, Seung-Ryul
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.69-72
    • /
    • 2004
  • Nowadays, one of the serious problems in the KEPCO system is a much higher fault current than the SCC (Short Circuit Capacity) of the circuit breaker. Since superconductivity technology has become more developed, the HTS-FCL (High Temperature Superconductor-Fault Current Limiter) may become an attractive alternative to solving the fault current problem. In order to achieve the best performance, the parameters of HTS-FCL should be designed optimally. Under this setting, this paper presents the optimal design method of parameters for resistive type HTS-FCL using the Monte Carlo technique.

Development of a Predicting Program of Vehicle Aerodynamic Drag and Optimization of Shape Parameters (자동차 공력저항 예측 프로그램 개발 및 형상인자의 최적화)

  • 한석영;맹주성;김무상;박재용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.223-227
    • /
    • 2002
  • Wind tunnel test or CFD is used for predicting aerodynamic drag coefficient in domestic motor companies. But, wind tunnel test requires much cost and time, and CFD has a relatively large error. In this study a predicting program of the aerodynamic drag coefficient based on empirical techniques was developed. Also GRG method was added to the program in order to decide optimal values of some parameters. The program was applied to 24 cars and the aerodynamic drag coefficients were predicted with 4.82% average error. Optimization was also accomplished to 6 cars. Some parameters to be modified were determined (1) to reduce the afterbody drag coefficient to the value established by a designer and (2) to preserve the same drag coefficient as the original automotive when some parameters have to be changed in the viewpoint of design. It was verified that the developed program can predict the aerodynamic drag coefficient appropriately and determine optimal values of some parameters.

Development of DS/FDM-a Robust CAD-based Optimal Design System and Its Application to Engineering Structures (CAD 기반 최적설계 시스템인 DS/FDM의 개발과 공학 구조물에 대한 적용)

  • Han, Jeong-Sam;Uphaus, Frank;Kim, Yeong-Ryeol;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.720-724
    • /
    • 2000
  • In this paper, we introduce a seamlessly integrated CAD-based design system (DS) for CAD modeling, engineering analysis, and optimal design which has been developed in CCED at KAIST, The key points of this integrating philosophy are to make full use of a parametric CAD program as the platform of integration and to adopt finite difference method for design sensitivity analysis in optimization process to get robustness and versatility. Design variables are directly selected by clicking CAD model parameters and all the analysis and design activities are menu-driven. This integrated program, named as DS/FDM, runs on Windows NT or Unix and FE analyses are performed at a remote Unix-workstation for multiple users. Application examples include shape optimal design of a belt clip that fits onto a portable electronic device and a bracket to show performance of DS/FDM with shell and tetra solid elements. This software is found efficient and effective fur shape design and size design of engineering structures.

  • PDF

Development of Optimal Accelerated Life Test Plans for Weibull Distribution Under Intermittent Inspection

  • Seo, Sun-Keun
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.1
    • /
    • pp.89-106
    • /
    • 1989
  • For Weibull distributed lifetimes, this paper presents asymptotically optimal accelerated life test plans for practical applications under intermittent inspection and type-I censoring. Computational results show that the asymptotic variance of a low quantile at the design stress as optimal criterion is insensitive to the number of inspections at overstress levels. Sensitivity analyses indicate that optimal plans are robust enough to moderate departures of estimated failure probabilities at the design and high stresses as input parameters to plan accelerated life tests from their true values. Monte Carlo simulation for small sample study on optimal accelerated life test plans developed by the asymptotic maximum likelihood theory is conducted. Simulation results suggest that optimal plans are satisfactory for sample size in practice.

  • PDF

Design of Automobile Subframe for Applying Welded Blanks Hydroforming (용접 판재 유압 성형을 적용한 승용차용 서브프레임 설계)

  • Park Y. B.;Kim H. Y.;Jeon B. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.35-43
    • /
    • 2001
  • As the demands for lightweight construction and precision grow, there is an increasing interest on hydroforming technology. This paper deals with designing automobile subframe for applying welded blanks hydroforming. In applying welded blanks hydroforming to automobile subframe, it is a serious problem that blanks wrinkle in deformed shape. To suppress wrinklings in blanks, the sections of the die where blanks wrinkled is modified. In addition to this, it is intended that the sum of thickness variation about wrinkling regions be minimized. For this purpose, parameters for influencing formability are selected and evaluated using orthogonal array. Among these parameters, parameters having a major effect on formability are selected again. Using CCD(central composite design) with the selected parameters, response surface is build up and optimal design is performed.

  • PDF

An Optimum Design of Ramp Test with Stress Loading from Use Condition and Upper Bound of Stress (사용조건에서 스트레스를 가하고 스트레스한계가 있는 램프시험의 최적설계)

  • 전영록
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.3
    • /
    • pp.79-93
    • /
    • 1999
  • The common accelerated life test(ALT) consists of test methods applying a constant stress, higher than the use condition stress, to items. There we, however, situations for which a progressive stress ALT, in which the stress on a test item is continuously increased with time, Is more convenient to perform testing and simpler in analyzing data than a constant stress ALT. When a product under constant stress s follows a Weibull distribution with parameters $\theta$(5) and $\beta$, maximum likelihood(ML) estimators of parameters involved in the model are obtained and their asymptotic distributions are derived under stress bounded ramp tests in which the stress is increased linearly from use condition stress to the stress upper bound. The optimum test plans are also found which minimize the asymptotic variance of the ML estimator of the log mean life at design constant stress. For selected values of the design parameters, tables useful for finding optimal test plans are given. The effect of the pre-estimates of design parameters is studied.

  • PDF

Development of Simulator and Robotic Door for Parametric Design Optimization of Washing Machine Door Motion (세탁기 도어 거동 인자 설계 최적화를 위한 시뮬레이터 및 로봇형 도어 장치 개발)

  • Yi, June-Sup;Jung, Byung-Jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • A design methodology for parametric design optimization of washing machine door is presented. We develop a motion simulator and a robotic door to simulate the various motion of washing machine doors. The motion of the washing machine door is related to hinge parameters. Springs and dampers are usually used in the hinge of washing machine door for controlling motion of the door. A physical simulator of the door motion is used for finding candidate parameters of the hinge and a robotic door whose motion is controlled algorithmically is used for consumer tests. Through the consumer evaluation on the robotic motion, the optimized parameters are determined. We find the optimal parameters as a function of angle and angular velocity of the door.

Development of a Costing Model for Wooden Patterns of Casting Structures for Machine Tools

  • Seo, Han-Tae;Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.386-393
    • /
    • 2015
  • A study is carried out on investigation on pattern costs, identification of geometric parameters for the cost, and development of cost estimation models for casting patterns. Pattern costs for machine tool structures are collected and analyzed to identify the important geometric parameters that affect the costs. The parameters are used for the development of the costing models. It is found that the geometric parameters can be easily obtained from a CAD system and then the costing models estimate a pattern cost in a minimum time. The models are verified with the structures whose pattern cost was used for this study. It is expected that this costing models can evaluate the cost of casting structures of machine tools in search of a near-optimal design based on manufacturing cost and, for example, weight at the design stage.

Shape Optimization of High Power Centrifugal Compressor Using Multi-Objective Optimal Method (다목적 최적화 기법을 이용한 고출력 원심압축기 형상 최적설계)

  • Kang, Hyun Su;Lee, Jeong Min;Kim, Youn Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.435-441
    • /
    • 2015
  • In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.