• Title/Summary/Keyword: Optimal Design Parameters

Search Result 1,812, Processing Time 0.023 seconds

Optimal Design of a Gear Pump for Yarning (방사용 기어펌프 최적설계)

  • 천길정
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.279-284
    • /
    • 2002
  • Optimal design program for an external gear pump for yarning has been developed. Optimization is accomplished using ADS program. Pump design parameters can be determined automatically for maximum gear efficiency with constraints considering shaft, bearing, gear and pump. Comparing the design parameters obtained by the program with those of the sample, it was verified that the program could be used as a design tool if it is modified a little.

Optimal Design of a Gear Pump for Yarning (방사용 기어펌프 최적설계)

  • Cheon, Gill-Jeong;Youn, In-Seong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.457-463
    • /
    • 2001
  • Optimal design program for an external gear pump for yarning has been developed. Optimization is accomplished using ADS program. Pump design parameters can be determined automatically for maximum gear efficiency with constraints considering shaft, bearing, gear and pump. Comparing the design parameters obtained by the program with those of the sample, it was verified that the program could be used as a design tool if it is modified a little.

  • PDF

The Robust Parameter Design of Multiple Characteristics with Multiple Objective and Subjective Attributes (다수의 주관적 요소와 객관적 요소를 고려한 다특성치 강건설계)

  • 조용욱;박명규
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.11a
    • /
    • pp.251-254
    • /
    • 2000
  • The critical problem in dealing with multiple characteristics is how to compromise the conflict among the selected levels of the design parameters for each individual characteristic. In this study, First, Methodology using SN ratio optimized by univariate technique is proposed and a parameter design procedure to achieve the optimal compromise among several different response variables is developed. Second, to solve the issue on the optimal design for multiple quality characteristics, this study modelled the expected loss function with cross-product terms among the characteristics and derived range of the coefficients of the terms. The model will be used to determine the global optimal design parameters where there exists the conflict among the characteristics, which shows difference in optimal design parameters for the individual characteristics. Third, this paper propose a decision model to incorporates the values assigned by a group of experts on different factors in weighting decision of characteristic. Using this model, SN ratio of taguchi method for each of subjective factors as well as values of weights are used in this comprehensive method for weighting decision of characteristic.

  • PDF

Optimal Design of Arrayed Waveguide Grating

  • Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.99-103
    • /
    • 2004
  • This paper describes the optimal design of an AWG spectrum to meet various specifications and improve some physical parameters. The objective function is the norm of the difference between design parameters and target values. To obtain the design parameters, the Fourier model is employed and the design variables arc spacing of array waveguide, width of array waveguide, optical path difference, and focal length. The (1+1) Evolution Strategy is employed as the optimization tool. The optimization procedure is applied to a 16-channel AWG and the optimized design variables will considerably improve the system performance.

Optimal Design of a Parallel-Flow Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 평행류 열교환기의 설계인자 최적화)

  • Oh, Seok-Jin;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1028-1033
    • /
    • 2004
  • The heat and flow characteristics in a single-phase parallel-flow heat exchanger was examined numerically to obtain its optimal shape. A response surface method was introduced to predict its performance approximately with respect to design parameters over design domain. Design parameters are inflow and outflow angle of the working fluid and horizontal and vertical location of inlet and outlet. The evaluation of the relative priority of the design parameters was performed to choose three important parameters in order to use a response surface method. A JF factor was used as an evaluation characteristic value to consider the heat transfer and the pressure drop simultaneously. The JF factor of the optimum model, compared to that of the base model, was increased by about 5.3%.

  • PDF

AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS (다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계)

  • Choi Jae-Min;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Tchamna, Rodrigue;Qyyum, Muhammad Abdul;Zahoor, Muhammad;Kamga, Camille;Kwok, Ezra;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.3
    • /
    • pp.356-367
    • /
    • 2019
  • This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.

Structural Optimal Design of the Frame of a Desktop Servo Pressing Machine (탁상용 압입기 프레임의 구조최적설계)

  • Lee, Boo-Youn;Jung, Jin-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3142-3150
    • /
    • 2013
  • Present research deals with an optimal design of the C-type frame of a desktop pressing machine to minimize its deformation which plays an important role in accuracy of the machine. Deformation pattern of the frame is analyzed by the finite element method. Design parameters are defined for the frame to derive an optimal design. Displacement and weight sensitivities of the parameters are analyzed using the method of the parametric study. On the basis of the response curves for the parameters, optimal designs of the frame are proposed. Effectiveness of the optimal design is verified by analyses in the viewpoint of the deformation and weight of the frame. Deformation of the optimized frame without increase of the weight is 87.5 % of the original frame.

The Parameter Design of Multiple Characteristics with Correlation (특성치간의 상관관계를 고려한 다특성치 파라미터 설계)

  • 조용욱;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.1
    • /
    • pp.161-170
    • /
    • 2000
  • When designing the parameter on the multiple quality characteristics, there has been a study for optimization of problems, but there has been few former study on the possible conflicting phenomena in consideration of the correlations among the characteristics. To solve the issue on the optimal design for multiple quality characteristics, this study modelled the expected loss function with cross-product terms among the characteristics and derived range of the coefficients of the terms. The model will be used to determine the global optimal design parameters where there exists the conflict among the characteristics, which shows difference in optimal design parameters for the individual characteristics.

  • PDF

Optimal Design of SR Machine for LSEV using CAD and Genetic Algorithm (GA와 상용설계기법을 이용한 저속전기자동차용 SRM의 최적화 설계)

  • Kim Tae-Hyoung;Ahn Jin-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.317-322
    • /
    • 2005
  • Advantages of switched reluctance motor(SRM) include a simple structure, the ability of operation in hash environments and under partial hardware failures, and a wide speed range. However design of SRM for industrial applications is very difficult because motor's inherent none-linearity and sensitivity of design parameter. In this paper, an optimal method for determining design parameters of a switched reluctance motor is researched. The dominant design parameters are stator and rotor pole arc and switching on and off angle. The parameters affecting performance are examined and selected using evolutionary computations and commercial CAD Program. The proposed design process is very fast. reliable and easy to access. The simulated design method proposed is compared with conventional procedure.