• Title/Summary/Keyword: Optimal Control Variables

Search Result 421, Processing Time 0.025 seconds

The Application of Optimal Control Through Fiscal Policy on Indonesian Economy

  • SYAHRINI, Intan;MASBAR, Raja;ALIASUDDIN, Aliasuddin;MUNZIR, Said;HAZMI, Yusri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.741-750
    • /
    • 2021
  • The budget deficit is closely related to expansionary fiscal policy as a fiscal instrument to encourage economic growth. This study aims to apply optimal control theory in the Keynesian macroeconomic model for the economy, so that optimal growth can be found. Macroeconomic variables include GDP, consumption, investment, exports, imports, and budget deficit as control variables. This study uses secondary data in the form of time series, the time period 1990 to 2018. Performing optimal control will result in optimal fiscal policy. The optimal determination is done through simulation, for the period 2019-2023. The discrete optimal control problem is to minimize the objective function in the form of a quadratic function against the deviation of the state variable and control variable from the target value and the optimal value. Meanwhile, the constraint is Keynes' macroeconomic model. The results showed that the optimal value of macroeconomic variables has a deviation from the target values consisting of: consumption, investment, exports, imports, GDP, and budget deficit. The largest deviation from the average during the simulation occurs in GDP, followed by investment, exports, and the budget deficit. Meanwhile, the lowest average deviation is found in imports.

Optimal Control for Central Cooling Systems (중앙냉방시스템의 최적제어에 관한 연구)

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

A Study on Optimal Synthesis of Multiple-Valued Logic Circuits using Universal Logic Modules U$_{f}$ based on Reed-Muller Expansions (Reed-Muller 전개식에 의한 범용 논리 모듈 U$_{f}$ 의 다치 논리 회로의 최적 합성에 관한 연구)

  • 최재석;한영환;성현경
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.43-53
    • /
    • 1997
  • In this paper, the optimal synthesis algorithm of multiple-valued logic circuits using universal logic modules (ULM) U$_{f}$ based on 3-variable ternary reed-muller expansions is presented. We check the degree of each varable for the coefficients of reed-muller expansions and determine the order of optimal control input variables that minimize the number of ULM U$_{f}$ modules. The order of optimal control input variables is utilized the realization of multiple-valued logic circuits to be constructed by ULM U$_{f}$ modules based on reed-muller expansions using the circuit cost matrix. This algorithm is performed only unit time in order to search for the optimal control input variables. Also, this algorithm is able to be programmed by computer and the run time on programming is O(p$^{n}$ ).

  • PDF

SOLVING A SYSTEM OF THE NONLINEAR EQUATIONS BY ITERATIVE DYNAMIC PROGRAMMING

  • Effati, S.;Roohparvar, H.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.399-409
    • /
    • 2007
  • In this paper we use iterative dynamic programming in the discrete case to solve a wide range of the nonlinear equations systems. First, by defining an error function, we transform the problem to an optimal control problem in discrete case. In using iterative dynamic programming to solve optimal control problems up to now, we have broken up the problem into a number of stages and assumed that the performance index could always be expressed explicitly in terms of the state variables at the last stage. This provided a scheme where we could proceed backwards in a systematic way, carrying out optimization at each stage. Suppose that the performance index can not be expressed in terms of the variables at the last stage only. In other words, suppose the performance index is also a function of controls and variables at the other stages. Then we have a nonseparable optimal control problem. Furthermore, we obtain the path from the initial point up to the approximate solution.

Optimal Process Condition for Products with Multi-Categorical Ordinal Quality Characteristic (다범주 순서형 품질특성을 갖는 제품의 최적 공정조건 결정에 관한 연구)

  • Kim Sang-Cheol;Yun Won-Young;Chun Young-Rok
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.3
    • /
    • pp.109-125
    • /
    • 2004
  • This paper deals with an optimal process control problem in production of hull structural steel plate with high defective rate. The main quality characteristic(dependent variable) is the internal quality(defect) of plates and is dependent on process parameters(independent variables). The dependent variable(quality characteristics) has three categorical ordinal data and there are 35 independent variables(29 continuous variables and 6 categorical variables). In this paper, we determine the main factors and to develop the mathematical model between internal quality predicted probabilities and the main factors. Secondly, we find out the optimal process condition of main factors through analysis of variance(ANOVA) using simulation. We consider three models to obtain the main factors and the optimal process condition: linear, quadratic, error models.

Variance Reductin via Adaptive Control Variates(ACV) (Variance Reduction via Adaptive Control Variates (ACV))

  • Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.91-106
    • /
    • 1996
  • Control Variate (CV) is very useful technique for variance reduction in a wide class of queueing network simulations. However, the loss in variance reduction caused by the estimation of the optimum control coefficients is an increasing function of the number of control variables. Therefore, in some situations, it is required to select an optimal set of control variables to maximize the variance reduction . In this paper, we develop the Adaptive Control Variates (ACV) method which selects an optimal set of control variates during the simulation adatively. ACV is useful to maximize the simulation efficiency when we need iterated simulations to find an optimal solution. One such an example is the Simulated Annealing (SA) because, in SA algorithm, we have to repeat in calculating the objective function values at each temperature, The ACV can also be applied to the queueing network optimization problems to find an optimal input parameters (such as service rates) to maximize the throughput rate with a certain cost constraint.

  • PDF

OPTIMUM DESIGN OF AN AUTOMOTIVE CATALYTIC CONVERTER FOR MINIMIZATION OF COLD-START EMISSIONS USING A MICRO GENETIC ALGORITHM

  • Kim, Y.D.;Kim, W.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.563-573
    • /
    • 2007
  • Optimal design of an automotive catalytic converter for minimization of cold-start emissions is numerically performed using a micro genetic algorithm for two optimization problems: optimal geometry design of the monolith for various operating conditions and optimal axial catalyst distribution. The optimal design process considered in this study consists of three modules: analysis, optimization, and control. The analysis module is used to evaluate the objective functions with a one-dimensional single channel model and the Romberg integration method. It obtains new design variables from the control module, produces the CO cumulative emissions and the integral value of a catalyst distribution function over the monolith volume, and provides objective function values to the control module. The optimal design variables for minimizing the objective functions are determined by the optimization module using a micro genetic algorithm. The control module manages the optimal design process that mainly takes place in both the analysis and optimization modules.

Application of optimal control to a distillation column (증류탑에의 최적제어 응용연구)

  • 장홍래;박현수;서인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.209-211
    • /
    • 1986
  • The continuous time linear quadratic problem (LQP) has been applied to the control of a 8-tray distillation column using the code VASP. The weighting matrices for the state variables and control variables were adjusted iteratively. The simulation results of the optimal control with 2 inputs and 2 outputs showed that the LQP method is very satisfactory for a rapid response and feedback control, and any desired response could be obtained by adjusting the weighting matrices Q under = and R under =. The feedback gain matrix K under = was also determined.

  • PDF

Optimal variables of TMDs for multi-mode buffeting control of long-span bridges

  • Chen, S.R.;Cai, C.S.;Gu, M.;Chang, C.C.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.387-402
    • /
    • 2003
  • In the past decades, much effort has been made towards the study of single-mode-based vibration controls with dynamic energy absorbers such as single or multiple Tuned Mass Dampers(TMDs). With the increase of bridge span length and the tendency of the bridge cross-section being more slender and streamlined, multi-mode coupled vibrations as well as their controls have become very important for large bridges susceptible to strong winds. As a simple but effective device, the TMD system especially the semi-active one has become a promising option for such coupled vibration controls. However, despite various studies of optimal controls of single-mode-based vibrations with TMDs, research on the corresponding controls of the multi-mode coupled vibrations is very rare so far. For the development of a semi-active control strategy to suppress the multi-mode coupled vibrations, a comprehensive parametric analysis on the optimal variables of this control is substantial. In the present study, a multi-mode control strategy named "three-row" TMD system is discussed and the general numerical equations are developed at first. Then a parametric study on the optimal control variables for the "three-row" TMD system is conducted for a prototype Humen Suspension Bridge, through which some useful information and a better understanding of the optimal control variables to suppress the coupled vibrations are obtained. This information lays a foundation for the design of semi-active control.

Optimal Controller for Near-Space Interceptor with Actuator Saturation

  • Fan, Guo-Long;Liang, Xiao-Geng;Hou, Zhen-Qian;Yang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.256-263
    • /
    • 2013
  • The saturation of the actuator impairs the response performance of the near space interceptor control system. A control system based on the properties of linear tracking system is designed for this problem. The properties are that the maximum value of the pseudo-Lyapunov function of the linear tracking control system do not present at the initial state but at the steady state, based on which the bounded stability problem is converted into linear tracking problem. The pseudo-Lyapunov function of the linear tracking system contain the input variables; the amplitude and frequency of the input variables affect the stability of the nonlinear control system. Designate expected closed-loop poles area for different input commands and obtain a controller which is function of input variables. The coupling between variables and linear matrices make the control system design problem non-convex. The non-convex problem is converted into a convex LMI according to the Shur complement lemma and iterative algorithm. Finally the simulation shows that the designed optimal control system is quick and accurate; the rationality of the presented design techniques is validated.