• Title/Summary/Keyword: Optimal Clustering

Search Result 367, Processing Time 0.022 seconds

Color image quantization considering distortion measure of local region block on RGB space (RGB 공간상의 국부 영역 블록의 왜곡척도를 고려한 칼라 영상 양자화)

  • 박양우;이응주;김경만;엄태억;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.848-854
    • /
    • 1996
  • Many image display devices allow only a limited number of colors to be simultaneously displayed. in disphaying of natural color image using color palette, it is necessary to construct an optimal color palette and the optimal mapping of each pixed of the original image to a color from the palette. In this paper, we proposed the clustering algorithm using local region block centered one color cluster in the prequantized 3-D histogram. Cluster pairs which have the least distortion error are merged by considering distortion measure. The clustering process is continued until to obtain the desired number of colors. The same as the clustering process, original color value. The proposed algorithm incroporated with a spatial activity weighting value which is reflected sensitivity of HVS quantization errors in smoothing region. This method produces high quality display images and considerably reduces computation time.

  • PDF

A Heuristic Task Allocation Scheme Based on Clustering (클러스터링을 이용한 경험적 태스크 할당 기법)

  • Kim, Seok-Il;Jeon, Jung-Nam;Kim, Gwan-Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2659-2669
    • /
    • 1999
  • This paper a heuristic, clustering based task allocation scheme applicable to non-directed task graph on a distributed system. This scheme firstly builds a task-machine graph, and then applies a clustering process where in a pair of tasks that are connected to the highest cost edge is merged into a big one or a task is allocated to a machine. During the process, the proposed scheme figure out a machine onto which the task allocation may cause deduction of large communication overhead that has incurred between the task and tasks that are already allocated to the machine while the computation costs is slightly increased in the machine. Simulation for the various task graphs shows that the scheduling using the proposed scheme result far better than ones by using the traditional schemes. A comparison with optimal task scheduling also promises that our scheme derives optimal results more occasionally than the traditional schemes do.

  • PDF

Bootstrap Method for k-Spatial Medians

  • Jhun, Myoung-Shic
    • Journal of the Korean Statistical Society
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 1986
  • The k-medians clustering method is considered to partition observations into k clusters. Consistency and advantage of bootstrap confidence sets of k optimal cluster centers are discussed. The k-medians and k-means clustering methods are compared by using actual data sets.

  • PDF

Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm (붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정)

  • Park, Min-Jae;Jun, Sung-Hae;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2003
  • Optimal determination of cluster size has an effect on the result of clustering. In K-means algorithm, the difference of clustering performance is large by initial K. But the initial cluster size is determined by prior knowledge or subjectivity in most clustering process. This subjective determination may not be optimal. In this Paper, the genetic algorithm based optimal determination approach of cluster size is proposed for automatic determination of cluster size and performance upgrading of its result. The initial population based on attribution is generated for searching optimal cluster size. The fitness value is defined the inverse of dissimilarity summation. So this is converged to upgraded total performance. The mutation operation is used for local minima problem. Finally, the re-sampling of bootstrapping is used for computational time cost.

Design of Hierarchically Structured Clustering Algorithm and its Application (계층 구조 클러스터링 알고리즘 설계 및 그 응용)

  • Bang, Young-Keun;Park, Ha-Yong;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.17-23
    • /
    • 2009
  • In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.

  • PDF

On 5-Axis Freeform Surface Machining Optimization: Vector Field Clustering Approach

  • My Chu A;Bohez Erik L J;Makhanov Stanlislav S;Munlin M;Phien Huynh N;Tabucanon Mario T
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach based on vector field clustering for tool path optimization of 5-axis CNC machining is presented in this paper. The strategy of the approach is to produce an efficient tool path with respect to the optimal cutting direction vector field. The optimal cutting direction maximizes the machining strip width. We use the normalized cut clustering technique to partition the vector field into clusters. The spiral and the zigzag patterns are then applied to generate tool path on the clusters. The iso-scallop method is used for calculating the tool path. Finally, our numerical examples and real cutting experiment show that the tool path generated by the proposed method is more efficient than the tool path generated by the traditional iso-parametric method.

Adaptive k-means clustering for Flying Ad-hoc Networks

  • Raza, Ali;Khan, Muhammad Fahad;Maqsood, Muazzam;Haider, Bilal;Aadil, Farhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2670-2685
    • /
    • 2020
  • Flying ad-hoc networks (FANETs) is a vibrant research area nowadays. This type of network ranges from various military and civilian applications. FANET is formed by micro and macro UAVs. Among many other problems, there are two main issues in FANET. Limited energy and high mobility of FANET nodes effect the flight time and routing directly. Clustering is a remedy to handle these types of problems. In this paper, an efficient clustering technique is proposed to handle routing and energy problems. Transmission range of FANET nodes is dynamically tuned accordingly as per their operational requirement. By optimizing the transmission range packet loss ratio (PLR) is minimized and link quality is improved which leads towards reduced energy consumption. To elect optimal cluster heads (CHs) based on their fitness we use k-means. Selection of optimal CHs reduce the routing overhead and improves energy consumption. Our proposed scheme outclasses the existing state-of-the-art techniques, ACO based CACONET and PSO based CLPSO, in terms of energy consumption and cluster building time.

Nearest neighbor and validity-based clustering

  • Son, Seo H.;Seo, Suk T.;Kwon, Soon H.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.337-340
    • /
    • 2004
  • The clustering problem can be formulated as the problem to find the number of clusters and a partition matrix from a given data set using the iterative or non-iterative algorithms. The author proposes a nearest neighbor and validity-based clustering algorithm where each data point in the data set is linked with the nearest neighbor data point to form initial clusters and then a cluster in the initial clusters is linked with the nearest neighbor cluster to form a new cluster. The linking between clusters is continued until no more linking is possible. An optimal set of clusters is identified by using the conventional cluster validity index. Experimental results on well-known data sets are provided to show the effectiveness of the proposed clustering algorithm.

A Linear Clustering Method for the Scheduling of the Directed Acyclic Graph Model with Multiprocessors Using Genetic Algorithm (다중프로세서를 갖는 유방향무환그래프 모델의 스케쥴링을 위한 유전알고리즘을 이용한 선형 클러스터링 해법)

  • Sung, Ki-Seok;Park, Jee-Hyuk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.591-600
    • /
    • 1998
  • The scheduling of parallel computing systems consists of two procedures, the assignment of tasks to each available processor and the ordering of tasks in each processor. The assignment procedure is same with a clustering. The clustering is classified into linear or nonlinear according to the precedence relationship of the tasks in each cluster. The parallel computing system can be modeled with a Directed Acyclic Graph(DAG). By the granularity theory, DAG is categorized into Coarse Grain Type(CDAG) and Fine Grain Type(FDAG). We suggest the linear clustering method for the scheduling of CDAG using the genetic algorithm. The method utilizes a properly that the optimal schedule of a CDAG is one of linear clustering. We present the computational comparisons between the suggested method for CDAG and an existing method for the general DAG including CDAG and FDAG.

  • PDF

A Study on Representative Skyline Using Connected Component Clustering

  • Choi, Jong-Hyeok;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Skyline queries are used in a variety of fields to make optimal decisions. However, as the volume of data and the dimension of the data increase, the number of skyline points increases with the amount of time it takes to discover them. Mainly, because the number of skylines is essential in many real-life applications, various studies have been proposed. However, previous researches have used the k-parameter methods such as top-k and k-means to discover representative skyline points (RSPs) from entire skyline point set, resulting in high query response time and reduced representativeness due to k dependency. To solve this problem, we propose a new Connected Component Clustering based Representative Skyline Query (3CRS) that can discover RSP quickly even in high-dimensional data through connected component clustering. 3CRS performs fast discovery and clustering of skylines through hash indexes and connected components and selects RSPs from each cluster. This paper proves the superiority of the proposed method by comparing it with representative skyline queries using k-means and DBSCAN with the real-world dataset.