• Title/Summary/Keyword: Optimal Blank Design

Search Result 44, Processing Time 0.019 seconds

Development of Blank Optimal Nesting Algorithm for Sheet Forming (판재성형을 위한 블랭크 최적 배치 알고리즘 개발)

  • Oh J. Y.;Oh S. I.;Kim S. J.;Rhim J. Y.;Lee J. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.32-35
    • /
    • 2001
  • In sheet metal forming process, it is very important to nest blanks optimally to get a maximum utilization ratio(UR) to reduce waste of material. Optimal Blank Nesting algorithm is developed about single nesting, double nesting, fixed slitting width and free slitting width. This algorithm was applied to various practical blanks which are under production. Then new optimal nesting configuration was obtained and higher UR was achieved by this program in each cases.

  • PDF

Analysis of Deformation Characteristics for Deep Drawing of Laser-welded Dlank (레이저 용접 소재의 디프 드로잉 성형특성 해석)

  • Kim, Yeong-Seok;Ha, Dong-Ho;Jeong, Gi-Jo;Seo, Man-Seok
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.519-529
    • /
    • 1998
  • In automotive industries the stamping of laser-welded blank gives many merits which bring about dimensional accuracy, strong body assembly and high productivity. However the welding of blanks with different thickness or/and different strength materials introduces many challenging formability problems for process development and tool design. in this paper the deformation characteristics for deep drawing process of laser-welded blank with different thickness sheets are investigated by experiment as well as by FEM simulation. The blank holding force ratio to avoid the movement of weld line was suggested and compared with the experimental result for cylindrical and rectangular cup drawing process. The optimal location of weld line in laser-welded blank with different thickness sheets is calculated to compensate for the movement of weld line on deep drawing process. In addition the effect of location of weld line on formability is clarified using FEM simulation.

  • PDF

Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification (프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구)

  • Kim, J.T.;Kim, B.M.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.186-194
    • /
    • 2012
  • Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

Stamping Analyses of Laser Welded Door Inner and Die Design (레이저 용접 도어 인너의 성형해석과 금형설계)

  • 김헌영;신용승;김관희;조원석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.65-71
    • /
    • 1997
  • Computer simulations and test trials are carried out to get the optimal conditions about the stamping die design of the tailor laser welded automotive door inner. Firstly, the stamping process including gravity deflection, bead calibration, binder wrap, forming and spring back, are analyzed by the computer simulation. The results of simulation shows good correspondance with those of test trial under the same conditions. The variables of parametric study which will be investigated in the simulation and test trials, are determined form the results of the first run. The formability under the various conditions is evaluated, which are the initial postion of blank, blank holding force, corner radius and the shape of drawbead. Finally, well controled sound product without fracture, wrinkling and excessive weldline movement is obtained.

  • PDF

Optimization of Spring Layout for Minimizing Twist of Sheet Metal Pins in Progressive Shearing (프로그레시브 전단 공정에서 박판 핀 비틀림 최소화를 위한 스프링 배치 최적화)

  • Song, H.K.;Shim, J.K.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.501-506
    • /
    • 2014
  • Progressive shearing with blanking dies is commonly employed to produce large quantities of tiny sheet metal electronic parts. Sheet metal pins, which are narrow and long, that are sheared with a progressive die set are often twisted. The twist in the sheet metal pins, which usually occurs in the final shearing operation, generally decreases with increasing blank holding force. The blank holding forces in all shearing operations are not the same because of different shearing positions and areas. In the current study, the optimal layout of the springs in a progressive die set to minimize the twist of the sheet metal pin is proposed. In order to find the holding force acting on the tiny narrow blanks produced with the proposed springs during the shearing process, the equivalent area method is used in the structural analysis. The shearing of the sheet-metal pin was simulated to compute the twist angle associated with the blank holding force. The constraint condition satisfying the pre-set blank holding force from the previous shearing operations was imposed. A design of experiments (DOE) was numerically implemented by analyzing the progressive die structure and by simulating the shearing process. From the meta-model created from the experimental results and by using a quadratic response surface method (PQRSM), the optimal layout of the springs was determined. The twist of sheet metal pin associated with the optimal layout of the springs found in the current study was compared with that of an existing progressive die to obtain a minimal amount of twist.

A Study on Improving Formability of Stamping Processes with Segmented Blank Holders using Artificial Neural Network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 분할 블랭크 홀더 스탬핑 공정의 성형성 향상에 관한 연구)

  • G. P. Kim;S. D., Goo;M. S. Kim;G. M. Han;S. W. Jun;J. S. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.276-286
    • /
    • 2023
  • The field of sheet metal forming using press technology has become essential in modern mass production systems. Draw bead is often used to enhance formability. However, optimal draw bead design often requires excessive time and cost due to iterative experimentation and sometimes results in some defects. Given these challenges, there is a need to enhance formability by introducing segmented blank holders without draw beads. In this paper, the feasibility of a localized holding strategy using segmented blank holders is evaluated without the use of draw beads. The possibility for improving the formability was evaluated by utilizing a combination of the forming limit diagram and the wrinkle pattern-based defect indicators. Artificial neural networks were used for predicting defect indicators corresponding to arbitrary input holding forces and the NSGA-II optimization algorithm is used to find optimum blank holder forces yielding better defect indicators than the original process with drawbeads. Using optimum holding forces obtained from the proposed procedure, the stamping process with the segmented blank holders can yield better formability than the conventional process with drawbeads.

Stamping Analysis and Die Design of Laser Welded Automotive Body (레이저 용접 차체의 성형해석과 금형설계)

  • Kim, Heon-Young;Shin, Yong-Seung;Kim, Koan-Hoi;Cho, Won-Seok
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.382-392
    • /
    • 1998
  • Computer simulations and test trials were carried out to obtain the optimal stamping conditions of the die design of the laser welded automotive body. The stamping process including gravity deflection bead calibration binder wrap, forming and spring back was simulated and compared with the results obtained from test trials. The production variables were determined from a preliminary operation and they were investigated in the simulation and the test trials. The formability was tested under the various conditions, such as the initial position of blank, blank holding force, corner radius and the shape of drawbead. Sound products without fracture, wrinkling and excessive weldline movement were produced by applying results obtained this investigation.

  • PDF

Optimal Design in cylindrical cup drawing by forming analysis (원형컵 드로잉의 성형해석에 의한 최적설계)

  • 정완진;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.393-396
    • /
    • 2003
  • A systematic investigation for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process design strategy on the product quality. Several types of process design were chosen from initial blank of 100mm in diameter to make final cup of 50mm in diameter. Forming analysis are carried out to find out optimal design in terms of drawing force. We assume that the case which shows minimum drawing force in the subsequent operations is the best case. Through experiments it is found that the case which shows minimum drawing force also results in minimum drawing force and better product quality than other case. Thus, it is shown that this design strategy is very effective in the improvement of quality in drawn cups.

  • PDF

Design of drawing process of 9Ni-4Co-0.3C steel to make a large pressure vessel (대형 압력용기 제작을 위한 9Ni-4Co-0.3C 강의 드로잉공정 설계에 관한 연구)

  • Hong Jin Tae;Lee Seok-Ryul;Kim Kyung Jin;Yang Dong Yol;Lee Kyung Hun;Choi Moon Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.93-99
    • /
    • 2005
  • In this work, computer-aided process design is carried out to develop an optimal preform of a pressure vessel. Knowledge-based rules are employed to design the preform, and they are formulated using the handbooks of plasticity theories. In the FE-analysis, a commercial finite element code, ABAQUS was employed. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed fur various combinations of die design parameters. The length of the land of die, the clearance between punch and die and the clearance between the blank holder and die are optimized to minimize the forming load. The results of the simulations are verified with the experiments which are scaled down to one tenth of the actual size.

Formability of Laser Welds in Zn-coated Steel Sheets (아연도금강판에 대한 레이저 용접부의 성형성)

  • 박찬철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.176-180
    • /
    • 1996
  • Continuous wave CO$_{2}$laser beam welding and formability of zinc coated steel shets were investigated. First, optimal welding condition could be obtained in but welding by using the data for heat input and welding velocity. The highest value of Erichsen test is 79.3% compare to that of base matel. Secondly, Formability of laser welds was investigated by using ball punch tester. Finally, the forming results of butt-welded sheets showed that the joing design was important to apply the laser welded blank in the automotive production.

  • PDF