• Title/Summary/Keyword: Optical wireless

Search Result 291, Processing Time 0.024 seconds

Quality Analysis of Wireless Communication Channel Based on the Shapes of LED-Based Interior Lighting (LED기반 실내 조명 구조에 따른 무선통신 채널의 품질 분석)

  • Choi, Su-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.606-612
    • /
    • 2012
  • Visible light communications (VLC) uses modern solid-state LEDs to broadcast information. Emerging white-light LEDs allows the combination of lighting and optical wireless communication in one optical source. In this paper, a new LED lighting using one-chip-type white LED is proposed for efficient illumination and optical wireless communications. Performance analysis such as horizontal illuminance, 3-dB cut-off frequency, inter-symbol interference, signal-to-noise ratio and bit-error rate shows the effects of the shapes of LED lighting. Performance of the proposed LED lighting under the existence of obstacles is superior to that of the existing LED lighting in illumination and optical wireless communication.

SNR Improvement in A Wireless Optical Differential Detector Using Plastic Fibers (플라스틱 광섬유를 이용한 무선광 차동검출기의 신호대잡음비 개선)

  • Lee Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.410-417
    • /
    • 2005
  • In this paper, optical noise is reduced by a differential detector with a plastic optical fiber bundle in a wireless optical interconnection. A plastic optical fiber bundle divides the received optical signal equally and connects it to two photodiodes. In this configuration two photodiodes effectively detect the optical signal at one point, and the output voltage variation due to the abrupt change of optical noise distribution in space disappears. The signal to noise ratio in a differential detector with a fiber bundle was improved to be $10\;\cal{dB}$ higher than in a single photodiode with an optical filter.

Optical Noise Reduction in A Wireless Optical System using Two Orthogonal Polarizers (무선광시스템에서 직교편광기를 이용한 잡음광의 소거)

  • 이성호;이준호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.891-897
    • /
    • 2003
  • In this paper, a circular orthogonal polarizer is newly fabricated and used in a differential detector to reduce the optical noise in a wireless optical interconnection. The orthogonal polarizer is composed of two semicircular polarizers whose transmission axes are orthogonal each other, The orthogonal polarizer is driven by a motor and matched to the signal polarization in order to reduce the optical noise interference. The noise power was reduced by about 20 dB using a differential detector with the orthogonal polarizer.

Channel Characteristics of Indoor Wireless Infrared Communication System Due to Different Transceiver Conditions

  • Peng, Chuan;Wang, Zan;Kim, Ji-Do;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.198-203
    • /
    • 2008
  • In this paper, we consider the diffuse type of indoor wireless optical communication (WOC) system. To find the channel characteristics of indoor wireless infrared communication system, we investigate the simulation process to get the impulse response of diffuse type and analyze the scenario of the indoor structure which we have built. The simulation results of the impulse response include power ratio and time delay due to bounce times. We get and discuss the receiving power distribution according to six configurations which have different transmitter and receiver positions and reflection coefficients of the indoor structure assumed. The results of this paper are useful to design the indoor wireless optical communication systems.

A Wireless Optical Detector using Angle Diversity (수광각 다이버시티를 이용한 무선광 검출기)

  • 이성호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.239-243
    • /
    • 2003
  • In this paper, an angle diversity wireless optical detector is realized that can receive the optical signal at an angle from 0 to 360 degrees. Eight photodiodes constitute an angle diversity receiver, and in order to reduce the voltage variation with the incident angle, the optical detector is stabilized with a digital potentiometer. In a stabilized state, the voltage variation is kept within 1/10 of maximum voltage. This configuration is very useful in constructing an omni-directional receiver in a wireless optical interconnection.

Reducing the Effects of Wireless Optical Noise Using the Loss Characteristics of Plastic Fibers (플라스틱 광섬유의 손실 특성을 이용한 무선잡음광의 영향 감소)

  • Lee Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.746-752
    • /
    • 2005
  • In this paper, optical noise effect is reduced by using the loss characteristics of plastic fibers in an optical wireless system. The attenuation coefficient of a plastic fiber for the signal is different from that f3r the noise light, and the length difference between two fibers to the 2PD's behaves like a discriminative element. It is possible to eliminate the optical noise effect and detect only the signal without optical filters. The signal to noise ratio in a differential detector using fibers was 9.7 dB higher than in a single photodiode without optical fiber.

10Mbps Optical Wireless Link Using Illumination LEDs (10Mbps급 조명용 LED 광무선 링크)

  • Kim, Jeong-Heon;Lee, Chung-Gyu;Park, Cheol-Su;Kim, Dong-Hwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.371-372
    • /
    • 2006
  • A 10Mbps optical wireless link using LED array has been demonstrated. The modulation bandwidth of the LED has been measured, and the transmission test according to modulation frequency has been also carried out. The good communication performance has been obtained at about 30cm distance at 10Mbps data rate.

  • PDF

A study of optical wireless non-LOS link system (광무선 LAN의 비가시전송에 관한 연구)

  • Kim, June-Hwan;Hong, Kwon-Eui;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.173-177
    • /
    • 1998
  • Under indoor environment, in case that wireless optical LAN does not obtain the line-of-sight between transmitter and receiver, hemi-spherical lens or reflector must be adopted to get broader beam width. The beam tilt and the fluctuations in amplitude and phase of optical signal through indoor-space occur due to the turbulene. This fading often results in unacceptably large bit error probabilities and thus performance degradation of wireless optical communications. In this paper, when the spherical filter at the front-end of transmitter and receiver is used for wireless optical channel not satisfying line-of-sight, the signal-to-noise ratio as to zenithal angle and the effect from the turbulence due to indoor temperature are investigated.

  • PDF

GaAs on Si substrate with dislocation filter layers for wafer-scale integration

  • Kim, HoSung;Kim, Tae-Soo;An, Shinmo;Kim, Duk-Jun;Kim, Kap Joong;Ko, Young-Ho;Ahn, Joon Tae;Han, Won Seok
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.909-915
    • /
    • 2021
  • GaAs on Si grown via metalorganic chemical vapor deposition is demonstrated using various Si substrate thicknesses and three types of dislocation filter layers (DFLs). The bowing was used to measure wafer-scale characteristics. The surface morphology and electron channeling contrast imaging (ECCI) were used to analyze the material quality of GaAs films. Only 3-㎛ bowing was observed using the 725-㎛-thick Si substrate. The bowing shows similar levels among the samples with DFLs, indicating that the Si substrate thickness mostly determines the bowing. According to the surface morphology and ECCI results, the compressive strained indium gallium arsenide/GaAs DFLs show an atomically flat surface with a root mean square value of 1.288 nm and minimum threading dislocation density (TDD) value of 2.4×107 cm-2. For lattice-matched DFLs, the indium gallium phosphide/GaAs DFLs are more effective in reducing the TDD than aluminum gallium arsenide/GaAs DFLs. Finally, we found that the strained DFLs can block propagate TDD effectively. The strained DFLs on the 725-㎛-thick Si substrate can be used for the large-scale integration of GaAs on Si with less bowing and low TDD.