• Title/Summary/Keyword: Optical temperature sensors

Search Result 220, Processing Time 0.029 seconds

Monitoring of a CFRP-Stiffened Panel Manufactured by VaRTM Using Fiber-Optic Sensors

  • Takeda, Shin-Ichi;Mizutani, Tadahito;Nishi, Takafumi;Uota, Naoki;Hirano, Yoshiyasu;Iwahori, Yutaka;Nagao, Yosuke;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 2008
  • FBG (Fiber Bragg Grating) sensors and optical fibers were embedded into CFRP dry preforms before resin impregnation in VaRTM (Vacuum-assisted Resin Transfer Molding). The embedding location was the interface between the skin and the stringer in a CFRP-stiffened panel. The reflection spectra of the FBG sensors monitored the strain and temperature changes during all the molding processes. The internal residual strains of the CFRP panel could be evaluated during both the curing time and the post-curing time. The temperature changes indicated the differences between the dry preform and the outside of the vacuum bagging. After the molding, four-point bending was applied to the panel for the verification of its structural integrity and the sensor capabilities. The optical fibers were then used for the newly-developed PPP-BOTDA (Pulse-PrePump Brillouin Optical Time Domain Analysis) system. The long-range distributed strain and temperature can be measured by this system, whose spatial resolution is 100 mm. The strain changes from the FBGs and the PPP-BOTDA agreed well with those from the conventional strain gages and FE analysis in the CFRP panel. Therefore, the fiber-optic sensors and its system were very effective for the evaluation of the VaRTM composite structures.

Measurement of Brillouin Backscattering for Distributed Temperature Sensor Applications

  • Kim, Su-Hwan;Kwon, Hyung-Woo;Kwon, Hyun-Ho;Jang, Hang-Seok;Kim, Jee-Hyun;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • We present measurements of the Brillouin frequency shift in an optical fiber using a 1550 nm distributed feedback laser diode(DFB-LD) as a light source. By modulating the probe light with an electro-optic modulator, we confirm the stimulated Brillouin gain spectrum(BGS) and spontaneous BGS using the coherent detection method. We also confirm the applicability of the technique to distributed temperature sensors that measure the change in Brillouin frequency shift due to temperature variations.

A study on optical properties of InP for implementation of fiber-optic temperature sensor (광섬유 온도센서를 위한 InP의 광학적 특성 연구)

  • Kim, Young-Soo;Shin, Keon-Hak;Chon, Byong-Sil
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.36-44
    • /
    • 1994
  • A fiber-optic temperature sensor utilizing InP as a sensing medium was implemented and tested to determine the dependance of the optical characteristics of InP on physical parameters for the use as design parameters in this type of sensors. The optical absorption coefficient of InP has been determined through the experimental measurement of the fundamental optical absorption characteristics at various temperature points. The transmission characteristics of light source at three temperature points($249^{\circ}K$, $298^{\circ}K$, $369^{\circ}K$) are computed from the optical absorption coefficient for a fixed length of InP. A series of measurement concluded that optical absorption edge moves to longer wavelength region at a speed of 0.42 nm / $^{\circ}K$ as the specimen gets hotter, and that increasing the thickness of the InP sensing layer shifts power density curve to lower temperature region.

  • PDF

Quasi-Distributed Temperature Sensor Based on a V-Grooved Single-Mode Optical Fiber Covered with Ethylene Vinyl Acetate

  • Kim, Kwang Taek;Jeong, Seong-Gab
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.229-233
    • /
    • 2014
  • In this study, a V-grooved single-mode fiber along with optical time domain reflectometry (OTDR) as a quasi-distributed temperature sensor was investigated. The external medium used to fill the V-groove affects the optical mode. The V-groove was filled with ethylene vinyl acetate (EVA) because its transmittance was sensitive to temperature. The experimental results showed that the optical loss of the sensor varies with temperature, and the sensitivity depends on the depth of the V-groove.

The Development of Optical Temperature Sensor Based on the Etched Bragg Gratings

  • Ahn, Kook-Chan;Lee, Sang-Mae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.56-64
    • /
    • 2001
  • An optical temperature sensor based on the etched planar waveguide Bragg grating is developed and its performance is explored using theoretical and experimental methods. The planar waveguide is designed and fabricated using optical lithography and wet chemical etching. An efficient butt coupled optical fiber is used to examine the spectral characteristics of the grating sensor, and to investigate the grating parameters. The typical bandwidth and reflectivity of the surface etched grating has been ~0.2 nm and ~7%, respectively, at a wavelength of ~1,552 nm. The temperature-induced wavelength change of the optical sensor is found to be slightly non-linear over ${\sim}200^{\circ}C$ temperature range. Theoretical models for the grating response of the sensor based on waveguide and classical laminated plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF

Electrical Properties of semiconducting $VO_2$-based Critical Temperature Sensors (반도성 $VO_2$계 급변온도센서의 전기적 특성)

  • 유광수;김종만;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.866-870
    • /
    • 1993
  • For VO2-based sensors applicable to temperature measurements and optical disk materials by the nature of semiconductor to metal transition, the crystallinity and temperature vs. resistance characteristics were investigated as a function of the heat treatment temperature. The bead-type sensors were prepared through typical sensor fabrication processing and heat-treated at 40$0^{\circ}C$, 50$0^{\circ}C$, and $600^{\circ}C$, respectively, for 30 minutes in H2 gas atmosphere. As results of the temperature vs. resistance measurements, the electrical resistance in the phase transition range was decreased by 102 order for the VO2 sensor and by 103 order for the V71P11Sra18 system. It was estimated that the hysteresis, temperature vs. resistance, and current vs. voltage characteristics of the V71P11Sr18 system could be utilized for commericialization as a temperature sensor.

  • PDF

Development of Noncontact Temperature Sensor Using Silver Halide Optical Fiber for Medical Usages (Silver Halide 광섬유를 이용한 의료용 비접촉식 온도 센서 개발)

  • Yoo, Wook-Jae;Cho, Dong-Hyun;Jang, Kyoung-Won;Chung, Soon-Cheol;Tack, Gye-Rae;Lee, Bong-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.337-342
    • /
    • 2006
  • We have developed a noncontact temperature sensor using a silver halide optical fiber. The infrared collimator and focus head are connected both ends of a silver halide optical fiber with SMA connectors and used to collimate radiations of a heat source and to focus them to infrared sensors such as a pyroelectric sensor and a thermopile sensor, respectively. The relation ships between the temperatures of a heat source and the output signals of the infrared sensors are determined to measure the surface temperature of a heat source. The measurable temperature range is from 25 to $60^{\circ}C$. It is expected that a noncontact temperature sensor using a silver halide optical fiber can be developed for medical usages such as temperature monitoring during hyperthermia, cryosurgery, laser surgery and diagnostic procedure based on the results of this study.

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.

A Study on the Accelerometer for the Acceleration and Inclination Estimation of Structures using Double-FBG Optical Sensors (이중 FBG 광섬유센서를 이용한 구조물 가속도 및 기울기 측정 장치에 관한 연구)

  • Lee, Geum-Suk;Ahn, Soo-Hong;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, an acceleration sensor that has optical fibers to measure the inclination and acceleration of a structure through contradictory changes in two-component FBG sensors was examined. The proposed method was to ensure precise measurement through the unification of the deformation rate sensor and the angular displacement sensor. A high sensitivity three-axis accelerometer was designed and prepared using this method. To verify the accuracy of the accelerometer, the change in wavelength according to temperature and tension was tested. Then, the change in wavelength of the prepared accelerometer according to the sensor angle, and that of the sensor according to the change in ambient temperature were measured. According to the test results on the FBG-based vibration sensor that was developed using a high-speed vibrator, the range in measurement was 0.7 g or more, wavelength sensitivity, 2150 pm/g or more, and the change in wavelength change, $9.5pm/^{\circ}C$.

Thermo-optic Effects of Bragg Grating Optical Temperature Sensor

  • Ahn, Kook-Chan;Lee, Sang-Mae;Lee, Gwang-Seok;Park, Seung-Bum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.24-30
    • /
    • 2002
  • This paper demonstrates a comparison of linear and nonlinear analyses for thermo-optic effects of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include theoretical analyses and experiment of the etched planar waveguide Bragg grating optical temperature sensor. Theoretical models with nonlinear than linear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.