• Title/Summary/Keyword: Optical sensing membrane

Search Result 16, Processing Time 0.02 seconds

On-line monitoring of microorganism cultivation processes using optical sensing membranes for simultaneous detection of dissolved oxygen and pH (용존산소와 pH의 동시 검출용 광학 센서 막을 이용한 미생물 발효공정의 온라인 모니터링)

  • Kim, Chun-Kwang;Rhee, Jong-II
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.106-112
    • /
    • 2009
  • An optical sensing membrane has been fabricated to measure the concentration of dissolved oxygen(DO) and pH value simultaneously. It has employed HPTS as a pH sensitive dye and a ruthenium(II) complex as a DO sensitive dye. The sensing membrane has been applied to wells in a 24-well microtiter plate. Using the 24-well microtiter plate the concentrations of dissolved oxygen and pH values have been on-line monitored during the cultivations of E.coli DH5${\alpha}$, B.cereus 318 and P.pastoris X-33. On-line monitoring of DO and pH in microorganism cultivation processes showed good performance of the sensing membrane containing 5 mM HPTS and 2 or 5 mg/mL Rudpp.

Characterization of Double-layer Optical Sensing Membranes for Dual Sensing of Dissolved Oxygen Concentrations and pH and Their Application to the On-line Monitoring of Fermentation Processes (용존산소농도와 pH의 동시 검출용 이중층 광학 센서막의 특성 및 발효공정의 온라인 모니터링에의 응용)

  • Kim, Chun-Kwang;Lee, Jong-Il
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.370-374
    • /
    • 2009
  • A double-layer optical sensing membrane has been fabricated to measure the concentration of dissolved oxygen (DO) and pH value simultaneously. (tris(4,7-diphenyl-1,10-phenanthroline (Rudpp) ruthenium(II)) as a DO sensitive dye has been mixed in the methyl trimethoxy silane (MTMS) sol-gel solution and coated onto one well in a 24-well microtiter plate. On the DO-sensing layer the GA (3-glycidoxypropyl trimethoxy silane (GPTMS), 3-aminopropyl trimethoxy silane (APTMS)) sol-gel solution mixed with 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) has been coated and used to measure pH values. The double-layer sensing membrane was affected by ionic strength and temperature. The double-layer sensing membrane for DO and pH has been applied to online monitor in microorganism cultivation processes and showed a good performance.

Study on Online Monitoring of Dissolved Oxygen, pH and Cell Concentration in E. coli Cultivation Processes Using MABOOMSTM (마이크로플레이트 기반 생물반응기 시스템 (MABOOMSTM)을 이용한 대장균 배양공정에서 용존산소, pH 및 세포농도의 온라인 모니터링 연구)

  • Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • Dissolved oxygen, pH and cell concentration have been online monitored in cultivation processes with Escherichia coli by using a $MABOOMS^{TM}$ (microplate-based bioreactor with optical online monitoring systems). Fluorescent sensing membranes containing Ru ${(dpp)_3}^{2+}$ or HPTS were prepared with GA sol-gel matrix and coated into a well of a 24-well microplate. Fluorescence intensity was measured and correlated to the dissolved oxygen or pH. Cell concentrations were also online monitored by measuring optical reflectance at 650 nm. A well of a 24-well microplate could also be divided into 4 parts, each of which was coated with fluorescent sensing membranes for the detection of dissolved oxygen or pH. The 24-well microplate coated with fluorescent sensing membranes or a 4-divided sensing membrane. was used to online monitor the dissolved oxygen, pH and cell concentration during E. coli cultivations. The online monitoring results showed the characteristics of cell growth in cultivation processes very well.

Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator

  • Jung, Arong;Rajakumar, Dhanarajan;Yoon, Bong-June;Baker, Bradley J.
    • Experimental Neurobiology
    • /
    • v.26 no.5
    • /
    • pp.241-251
    • /
    • 2017
  • Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.

Fabrication of an Optical Hydrogen Sensor Based on 3C-SiC Photovoltaic Effect and Its Characteristics (3C-SiC 광기전 특성 기반 광학식 수소센서의 제작과 그 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.283-286
    • /
    • 2012
  • This paper presents the optical hydrogen sensor based on transparent 3C-SiC membrane and photovoltaic effect. Gasochromic materials of Pd and Pd/$WO_3$ were deposited by sputter on 3C-SiC membrane for gas sensing area. Gasochromic materials change to transparency by exposure to hydrogen. The variations of light intensity by hydrogen generate the photovoltaic of P-N junction between N-type 3C-SiC and P-type Si. Single layer of Pd shows higher photovoltaic compared with Pd/$WO_3$. However, phase transition from ${\alpha}$ to ${\beta}$ is shown at 6 %. Pd/$WO_3$ structure show the more linear response to hydrogen range of 2 % ~10 %. Also, almost 2 times fast response and recovery characteristics are shown at Pd/$WO_3$. These fast performances are come from the fact that Pd promoted the chemical reaction between hydrogen and $WO_3$.

Pattern recognition and characteristics of basic taste substances using the evanescent wave in multichannel optical fiber sensor (소산파를 이용한 다채널 광섬유형 미각센서의 제작 및 기본 맛에 대한 패턴분석)

  • Lee, Su-Mi;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • In this study, a multichannel taste sensor using the evanescent field absorption in fiber optic was developed, and evaluated its characteristics for several basic taste substances. This sensor is based on the change of evanescent field absorption at the surface of optical fiber core layer. The sensor device was made of a plastic-clad-silica fiber (3M Co., FP-400-UHT, core diameter $400\;{\mu}m$) and a middle portion of cladding layer was removed and the surface of stripped fiber core was dip-coated with a sensing membrane. And then, it was determined the difference of evanescent field absorption into the sensing membrane, according to various taste substances and its concentrations variance. The sensing membranes were prepared with six kinds of dyes, were known as potential sensitive dye together with silicone polymer the same refractive index of cladding. Each output patterns were obtained from the sensor devices could be distinguished not only five kinds of basic taste substances such as sweetness, saltiness, sourness, bitterness and umami, but also various mixed taste substances.

  • PDF

Position Estimation of Sound Source Using Three Optical Mach-Zehnder Acoustic Sensor Array

  • Hwang, Jeong-hwan;Seon, Seokpyeong;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.573-578
    • /
    • 2017
  • Position estimation of a sound source based on time difference of arrival at an array of three acousto-optic sensors is introduced. Each sensor consists of a Mach-Zehnder interferometer including a sensing part in one arm that is a piece of fiber surrounded by membrane in order to enhance the acousto-optic effect. Estimation error of a recorded gunshot sound signal was evaluated with the theoretically calculated values for two different locations.

Characterization of carbon dioxide sensitive fluorescence dye immobilized on the sol-gel

  • Sohn, Ok-Jae;Lam, Tuan-Hung;Rhee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.478-481
    • /
    • 2005
  • In this study optical sensing membrane was developed for the queantification of dissolved carbon dioxide in micro-bioreactor using an immobilized 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS). For the immobilization of HPTS sol-gel was synthesied by using 3-glycidoxypropyl-dimethoxymethylsiline and tetraethyl orthosilicate.

  • PDF

Characteristics of Trichloroethene and Tetrachloroethene Sensing Optical Fiber Biosensor Using Toluene-o-monooxygenase and Fluoresceinamine (Toluene-o-monooxygenase와 Fluoresceinamine을 이용한 Trichloroethene와 Tetrachloroethene 감지용 광섬유 바이오센서의 특성)

  • Ryoo, Doohyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.42-47
    • /
    • 2018
  • E. coli TG1 pBS TOM Green was cultured to produce toluene-o-monooxygenase (TOM). A biosensor system was successfully constructed using purified TOM to effectively detect trichloroethene (TCE) and tetrachloroethene (PCE), which represent some of the major contaminants in groundwater and soil. In order to utilize TOM as a sensor, NADH, a biological oxidizer, was replaced with hydrogen peroxide which is a chemical oxidizing agent. A three-layered sandwich-type sensing tip was fabricated on the outside of the hydrophilic polyvinylidene fluoride membrane. TCE and PCE were applied to the sensor and the hydrogen ions were measured by a fiber optic fluorometer using fluoresceinamine. Calibration curves were obtained for TCE and PCE in the concentration range of 0.2-100 mg/l, and the detection limit of the system was $10{\mu}g/l$ for TCE and PCE.

Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection (색 변화를 활용한 중금속 이온 검출에 특화된 멤브레인 기반 센서의 최근 연구 개발 동향)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.87-100
    • /
    • 2021
  • With a striking increase in the level of contamination and subsequent degradations in the environment, detection and monitoring of contaminants in various sites has become a crucial mission in current society. In this review, we have summarized the current research areas in membrane-based colorimetric sensors for trace detection of various molecules. The researches covered in this summary utilize membranes composed of cellulose fibers as sensing platforms and metal nanoparticles or fluorophores as optical reagents. Displaying decent or excellent sensitivity, most of the developed sensors achieve a significant selectivity in the presence of interfering ions. The physical and chemical properties of cellulose membrane platforms can be customized by changing the synthesis method or type of optical reagent used, allowing a wide range of applications possible. Membrane-based sensors are also portable and have great mechanical properties, which enable on-site detection of contaminants. With such superior qualities, membrane-based sensors examined in the researches were used for versatile purposes including quantification of heavy metals in drinking water, trace detection of toxic antibiotics and heavy metals in environmental water samples. Some of the sensors exhibited additional features like antimicrobial ability and recyclability. Lastly, while most of the sensors aimed for a detection enabled by naked eyes through rapid colour change, many of them investigated further detection methods like fluorescence, UV-vis spectroscopy, and RGB colour intensity.