• Title/Summary/Keyword: Optical processing devices

Search Result 135, Processing Time 0.031 seconds

Polymer-Based Devices for Optical Communications

  • Lee, Myung-Hyun;Ju, Jung-Jin;Park, Sun-Tak;Do, Jung-Yun;Park, Seung-Koo
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.259-269
    • /
    • 2002
  • Polymers are emerging as new alternative materials for optical communication devices. We developed two types of polymer-based devices for optical communications. One type is for ultra high-speed signal processing that uses nonlinear optical (NLO) polymers in such devices as electro-optic (EO) Mach-Z${\ddot{e}} $ hnder (MZ) modulators and EO 2${\times}$2 switches. The other is for WDM optical communications that use low-loss optical polymers in such devices as 1${\times}$2, 2${\times}$2, 4-arrayed 2${\times}$2 digital optical switches (DOSs) and 16${\times}$16 arrayed waveguide grating (AWG) routers. For these devices, we synthesized a polyetherimide-disperse red 1 (PEI-DR1) side chain NLO polymer and a low-loss optical polymer known as fluorinated polyaryleneethers (FPAE). This paper presents the details of our development of these polymeric photonic devices considering all aspects from materials to packaging.

  • PDF

A Review on the Photonic Physics for Optical Information Processing Technology (광정보처리 기술을 위한 광자물리학)

  • 김경헌;곽종훈;이학규;황월연;이일항;이용탁
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.223-239
    • /
    • 1990
  • This paper presents an overview on the present status and future trends of photonic physics and engineering as applicable to optical materials and devices that would enable optical information processing and optical commmication technologies of the future. Covered subjects include semiconductor quantum devices, organic materials, photorefractive physics, quantum effect, non-linear processing optical amplification, memory, integrated optics, and applications in all-optical communications and processing, including photonic switching.

  • PDF

All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators

  • Dolatabady, Alireza;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.432-442
    • /
    • 2012
  • In this paper, we propose, analyze and simulate the performances of some new plasmonic logic gates in two dimensional plasmonic waveguides with nanodisk resonators, using the numerical method of finite difference time domain (FDTD). These gates, including XOR, XNOR, NAND, and NOT, can provide the highly integrated optical logic circuits. Also, by cascading and combining these basic logic gates, any logic operation can be realized. These devices can be utilized significantly in optical processing and telecommunication devices.

Planar Waveguide Devices for Communication and Sensing Applications

  • Okamoto, Katsunari
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.290-297
    • /
    • 2010
  • The paper reviews progress and future prospects of two kinds of planar waveguide devices; they are (a) silica and silicon photonics multi/demultiplexers for communications and signal processing applications, and (b) a novel waveguide spectrometer based on Fourier transform spectroscopy for sensing applications.

Femtosecond Laser Application to PLC Optical Devices and Packaging

  • Sohn, Ik-Bu;Lee, Man-Seop;Lee, Sang-Man
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.446-448
    • /
    • 2005
  • Using tightly focused femtosecond laser pulses, we produce an optical waveguide and devices in transparent materials. This technique has the potential to generate not only channel waveguides, but also three-dimensional optical devices. In this paper, an optical splitter and U-grooves, which are used for fiber alignment, are simultaneously fabricated in a fused silica glass using near-IR femtosecond laser pulses. The fiber- aligned optical splitter has a low insertion loss, less than 4 dB, including an intrinsic splitting loss of 3 dB and excess loss due to the passive alignment of a single-mode fiber. Finally, we present an output field pattern, demonstrating that the splitting ratio of the optical splitter becomes approximately 1:1.

  • PDF

The Surface Image Properties of BST Thin Film by Depositing Conditions (코팅 조건에 따른 BST 박막의 표면 이미지 특성)

  • Hong, Kyung-Jin;Ki, Hyun-Cheol;Ooh, Soo-Hong;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.107-110
    • /
    • 2002
  • The optical memory devices of BST thin films to composite $(Ba_{0.7}\;Sr_{0.3})TiO_{3}$ using sol-gel method were fabricated by changing of the depositing layer number on $Pt/Ti/SiO_{2}/Si$ substrate. The structural properties of optical memory devices to be ferroelectric was investigated by fractal analysis and 3-dimension image processing. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was $2500[\AA]$, $3500[\AA]$ and $3800[\AA]$. BST thin films exhibited the most pronounced grain growth. The surface morphology image was roughness with coating numbers. The thin films increasing with coating numbers shows a more textured and complex configuration.

  • PDF

Analysis of DDS Sampling Method and Harmonic Composition

  • Zhi-lai Zhang;Shao-jun Jiang;Li-li Liang
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.164-172
    • /
    • 2023
  • Through theoretical proof and algorithm design, this paper numerically demonstrates that the three sampling methods of DDS are equivalent in amplitude-frequency characteristics. Depending on theoretical analysis, the article obtains the conclusion that 2 points are optimal when sampling at 2, 3, and 4 points. Built on the data results, this paper obtains the fractional form of the amplitude and phase of the DDS sampled signal; in addition, this paper also obtains the design parameters of the DDS post-stage filter. It also gives a control method for the calculation error when addressing this issue.

Blind Signal Processing for Medical Sensing Systems with Optical-Fiber Signal Transmission

  • Kim, Namyong;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In many medical image devices, dc noise often prevents normal diagnosis. In wireless capsule endoscopy systems, multipath fading through indoor wireless links induces inter-symbol interference (ISI) and indoor electric devices generate impulsive noise in the received signal. Moreover, dc noise, ISI, and impulsive noise are also found in optical fiber communication that can be used in remote medical diagnosis. In this paper, a blind signal processing method based on the biased probability density functions of constant modulus error that is robust to those problems that can cause error propagation in decision feedback (DF) methods is presented. Based on this property of robustness to error propagation, a DF version of the method is proposed. In the simulation for the impulse response of optical fiber channels having slowly varying dc noise and impulsive noise, the proposed DF method yields a performance enhancement of approximately 10 dB in mean squared error over its linear counterpart.

Material Processing by Laser (레이저를 이용한 재료가공)

  • 황경현;이성국
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.98-106
    • /
    • 1990
  • Lasers are used increasingly for specialized engineering applications such as drilling, profile cutting, welding and surface heat-treatment(hardening, alloying, annealing0 of metals and non-metals. The most important characteristics of lasers used for these materials-processing applications are reviewed, with special emphasis on the importance of the controlled heating process. In addition to these processes, some optical devices and supplementary equipment used in laser processing are introduced. Finally, some examples shows the wide variety of laser capability for substitution of traditional materials processing.

  • PDF

Four-dimensional nanofabrication for next-generation optical devices

  • Moohyuk Kim;Myung-Ki Kim
    • Journal of the Korean Physical Society
    • /
    • v.81
    • /
    • pp.516-524
    • /
    • 2022
  • Recently, three-dimensional (3D) nano-processing technology that can increase design freedom and space efficiency of devices has been being rapidly developed, and is highly expected to provide a key path for the development of next-generation optical devices. This technology has shown a high possibility of success in realizing the future devices, but still are facing many challenges in the popularization and practical application. In particular, the ability of quickly, precisely, and stably fabricating complex 3D nanostructures composed of many individual elements is strongly demanded. In recent years, the so-called four-dimensional (4D) nanofabrication technology is attracting attention. The 4D nanofabrication is achieved by applying an external force to manufactured two-dimensional nanostructures, inducing deformation in time, and then precisely transforming them into 3D nanostructures. The 4D nanofabrication technology with excellent flexibility, versatility, functionality, and reconfiguration properties provides a new paradigm enabling effectively control the mechanical, electrical, and optical properties of existing materials. In this review, we examine the conventional methods for fabricating 3D nanostructures, and then investigate 4D nanofabrication technology in detail.