• 제목/요약/키워드: Optical parametric oscillator

검색결과 32건 처리시간 0.019초

Wide-Tunable Mid Infrared Intra-cavity Optical Parametric Oscillator Based on Multi-period MgO:PPLN

  • Wang, Xiao-Chan;Wang, Yu-Heng;Zheng, Hao;Liu, Hong-Zhi;Yu, Yong-Ji;Wang, Zi-Jian
    • Current Optics and Photonics
    • /
    • 제5권1호
    • /
    • pp.59-65
    • /
    • 2021
  • This paper reports a tunable diode-pumped folded intracavity Q-switched singly resonant optical parametric oscillator based on multi-period MgO:PPLN. A wide tuning mid-infrared parametric light from 2.78 ㎛ to 4.17 ㎛ was obtained in real time by changing the poled periods and temperatures. The maximum output power of 1.89 W at 3.2 ㎛, 1.53 W at 3.5 ㎛, 0.87 W at 3.8 ㎛ and 0.486 W at 4.1 ㎛ were achieved. The highest optical-optical conversion efficiency was 7.89%. During experiments, a range tunable output of 2.78-4.17 ㎛ in the mid-infrared range was achieved.

Frequency Tuning Characteristics of a THz-wave Parametric Oscillator

  • Li, Zhongyang;Bing, Pibin;Xu, Degang;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.97-102
    • /
    • 2013
  • Frequency tuning characteristics of a THz-wave by varying phase-matching angle and pump wavelength in a noncollinear phase-matching THz-wave parametric oscillator (TPO) are analyzed. A novel scheme to realize the tuning of a THz-wave by moving the cavity mirror forwards and backwards is proposed in a noncollinear phase-matching TPO. The parametric gain coefficients of the THz-wave in a $LiNbO_3$ crystal are explored under different working temperatures. The relationship between the poling period of periodically poled $LiNbO_3$ (PPLN) and the THz-wave frequency under the condition of a quasi-phase-matching configuration is deduced. Such analyses have an impact on the experiments of the TPO.

Mid-infrared Continuous-wave Optical Parametric Oscillator with a Fan-out Grating MgO:PPLN Operating Up to 5.3 ㎛

  • Bae, In-Ho;Yoo, Jae-Keun;Lim, Sun Do;Kim, Seung Kwan;Lee, Dong-Hoon
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.577-582
    • /
    • 2019
  • We report on a continuous-wave (cw) optical parametric oscillator (OPO) optimized for mid-infrared emission above 5.0 ㎛. The OPO is based on a magnesium-oxide-doped periodically poled LiNbO3(MgO:PPLN) crystal with a fan-out grating design. A linear two-mirror cavity resonating both at the pump and signal wavelengths is stabilized to the pump laser by using the modified Pound-Drever-Hall (PDH) method. The idler wavelength is continuously tunable from 4.7 ㎛ up to 5.3 ㎛ by varying the poling period of the fan-out grating crystal. Pumped by a diode-pumped solid state (DPSS) laser with a power of 1.1 W at 1064 nm, the maximum idler output power is measured to be 5.3 mW at 4.8 ㎛. The output power above 5.0 ㎛ is reduced to the hundreds of ㎼ level due to increased absorption in the crystal, but is stable and strong enough to be measured with a conventional detector.

Development of a Mid-infrared CW Optical Parametric Oscillator Based on Fan-out Grating MgO:PPLN Pumped at 1064 nm

  • Bae, In-Ho;Lim, Sun Do;Yoo, Jae-Keun;Lee, Dong-Hoon;Kim, Seung Kwan
    • Current Optics and Photonics
    • /
    • 제3권1호
    • /
    • pp.33-39
    • /
    • 2019
  • We report development of a frequency-stabilized mid-infrared continuous-wave (cw) optical parametric oscillator (OPO) based on a fan-out grating MgO:PPLN crystal pumped at 1064 nm. The OPO resonator was designed as a pump-enhanced standing-wave cavity that resonates to the pump and signal beams. To realize stable operation of the OPO, we applied a modified Pound-Drever-Hall technique, which is a well-known method for powerful laser frequency stabilization. Tuning a poling period of the fan-out grating of the crystal allows wavelength-tunable OPO outputs from 1510 nm to 1852 nm and from 2500 nm to 3600 nm for signal and idler beams, respectively. At the idler wavelengths of 2500 nm, 3000 nm and 3500 nm, we achieved more than 50 mW of output powers at a pumping power of 1.1 W. The long-term stability of the OPO was confirmed by recording the power and wavelength variations of the idler for an hour.

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.

Nano-Second Periodically Poled Lithium Niobate Optical Parametric Oscillator with Planar Cavity Mirrors

  • Kim, Hong-Ki;Rhee, Bum--Ku
    • Journal of the Optical Society of Korea
    • /
    • 제5권4호
    • /
    • pp.136-139
    • /
    • 2001
  • We investigated a high-output ower, periodically poled lithium niobate(PPLN) optical parametric oscillator(OPO) pumped by a Q-switched Nd:YAG laser. Given the low optical damage threshold and the limited aperture (0.5mm thick) of PPLN, we tried to maximize the signal output power in a linear cavity consisting of two flat mirrors with a loosely focused pump beam. It is found that this simple cavity structure allowed a robust OPO operation, which was not sensitive to alignment compared with the conventional ones using concave mirrors. A maximum energy of 100$\mu$J/pulse was achieved for the signal at 1.36${\mu}{\textrm}{m}$, while the oscillation threshold was 0.3 mJ/pulse for the pump at 1064 nm.

주기적으로 분극반전된 $LiNbO_3$ 결정에서 광매개증폭 (Optical Parametric Oscillation in Periodically Poled Lithium Niobate Crystal)

  • Kim Hong-Gi;Cha Myeong-Sik;Lee Beom-Gu
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2001년도 제12회 정기총회 및 01년도 동계학술발표회
    • /
    • pp.222-223
    • /
    • 2001
  • Optical parametric oscillator(OPO) has been used to generate coherent and tunable laser source with birefringent phase-matching technique in various nonlinear materials. In birefringent phase-matching, the output wavelength is controlled with angle or temperature tuning of the refractive index. However these tuning methods have several limitations such as restriction of tuning wavelength due to reasonable angular and temperature tuning ranges, Poynting vector walk-off which limits the interaction length, and thermal stabilization time. (omitted)

  • PDF